期刊文献+

ASON BoD业务在线预测与带宽调整研究 被引量:1

Study on online prediction of BoD services and bandwidth adjustment in ASON
下载PDF
导出
摘要 文章提出了微粒群优化的3层BP神经网络在线3步预测智能光网络带宽按需分配(BoD)业务流量模型,并改进了微粒群优化算法。对适应值较差的一部分微粒施加随机扰动,然后评估扰动效果,接受进化同时以一定概率接受退化。按3步预测中的最大值分配带宽,降低了突发业务阻塞率。仿真结果表明,该预测模型适应突发性、多样性BoD业务流量的在线预测。 In this paper, a 3-layer PSO-trained BP Artificial Neural Networks (ANN) model is proposed for the on-line prediction of Bandwidth on Demand (BoD) ASON services and the Particle Swarm Optimization (PSO) algorithm improved. Particles with poor fitness are imposed with disturbances at random and then the disturbance effect is evaluated. The improved particles are accepted and at the same time the degenerated ones are also accepted in a certain probability. The maximum of the three predicted data is considered as the future bandwidth distribution, thus reducing the blocking rate of the bursting service. The simulation results show that this prediction model is appropriate for the on-line prediction of bursting and diversified BoD services.
出处 《光通信研究》 北大核心 2010年第1期8-10,14,共4页 Study on Optical Communications
基金 国家自然科学基金资助项目(60702056)
  • 相关文献

参考文献5

  • 1李健,张杰,顾畹仪.ASON中BoD业务的实现[J].电信科学,2005,21(10):48-53. 被引量:2
  • 2Doulamis A D, Doulamis N D, Kollias S D. An Adaptable Neural-Network Model for Recursive Nonlinear Traffic Prediction and Modeling of MPEG Video Sources[J].IEEE Transaction on Neural Networks, 2003, 14(1) :150-166.
  • 3Kennedy J, Eberhart R. Particle Swarm Optimization[A]. Proceedings of IEEE International Conference on Neural Networks[C]. Perth, Austria: IEEE, 1995.
  • 4Pant M, Radha T, Singh V P. A Simple Diversity Guided Particle Swarm Optimization [A]. IEEE International Conference on Evolution Computation[C]. Singapore: IEEE, 2007.3 294- 3 299.
  • 5陈国初,俞金寿.两群微粒群优化算法及其应用[J].控制理论与应用,2007,24(2):294-298. 被引量:23

二级参考文献5

  • 1KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc of IEEE Int Symposium on Neural Networks.New York:IEEE Service Center,1995:1942-1948.
  • 2EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C]//Proc of the Sixth Int Symposium on Micro Machine and Human Science.New York:IEEE Service Center,1995:39-43.
  • 3PARSOPOULOS K E,VRAHATIS M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002,1(2-3):235-306.
  • 4张晓东,王伟,王小刚.选矿过程神经网络粒度软测量方法的研究[J].控制理论与应用,2002,19(1):85-88. 被引量:18
  • 5孙炜,王耀南.模糊小波基神经网络的机器人轨迹跟踪控制[J].控制理论与应用,2003,20(1):49-53. 被引量:22

共引文献23

同被引文献4

  • 1甘苹.高效公平的EPON DBA算法设计原则[J].上海应用技术学院学报(自然科学版),2008,8(4):284-289. 被引量:2
  • 2Kramer G, Mukherjee B,Pesavento G.IPACT: a dynamic protocol for an Ethemet PON(EPON)[J].IEEE Commu- nications Magazine,2002,40(2) :74-80.
  • 3Hwang I-Shyan, Shyu Zen-Der, Ke Liang-Yu, et al.A novel early DBA mechanism with prediction-based fair exces- sive bandwidth allocation scheme in EPON[J].Computer Communications, 2008,31 : 1814-1823.
  • 4Doulamis A D, Doulamis N D, Kollias S D.An adaptable neural-network model for recursive nonlinear traffic pre- diction and modeling of MPEG video sources[J].IEEE Transactions on Neural Networks,2003,14(1 ) : 150-166.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部