期刊文献+

基于条件模拟的DEM误差曲面实现研究 被引量:5

DEM Error Surface Realization Based on Conditional Simulation
原文传递
导出
摘要 为了克服DEM全局误差指标描述DEM精度的缺陷,基于条件模拟(CS)实现了DEM误差曲面的构建。构建了甘肃省董志塬某测区DEM误差曲面,并与普通Kriging(OK)插值结果进行了比较。结果表明,OK具有明显的平滑效应,而CS能准确反映DEM误差的空间波动性。DEM误差对坡度精度的影响分析表明,相比地形复杂的区域,DEM误差严重影响平坦区域的坡度精度;对测区水土流失等级划分结果的分析表明,约有70.2%的网格点的等级划分受DEM误差的影响。 In order to overcome the limitations of RMSEs, we developed a scheme for DEM error surface construction based on conditional simulation (CS). A DEM error surface of Dongzhi tableland locate in Gansu province were comparatively constructed based on CS and ordinary Kriging(OK). Results indicate that OK has an obvious smooth effect, whereas CS can accurately represent the spatial fluctuation of DEM errors. DEM error has a more serious effect on slope accuracy in flat area than that in complex area; Results of water and soil loss level determination show that about 70.2 % of grids are influenced by DEM errors.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第2期197-200,共4页 Geomatics and Information Science of Wuhan University
基金 国家高新技术发展计划资助项目(2006AA12Z219) 中国科学院知识创新工程资助项目(kzcx2-yw-429) 国家杰出青年科学基金资助项目(40825003) 国家科技支撑计划资助项目(2006BAC08B04)
关键词 精度 误差 条件模拟 坡度 DEM accuracy error conditional simulation slope DEM
  • 相关文献

参考文献18

  • 1Li Zhilin. Effects of Check Points on the Reliability of DTM Accuracy Estimates Obtained from Experimental Tests[J].Photogrammetric Engineering and Remote Sensing, 1991, 57(10): 1 333-1 340.
  • 2Fisher P F, Tate N J. Causes and Consequences of Error in Digital Elevation Models[J].Progress in Physical Geography, 2006, 30(4): 467-489.
  • 3Brown D, Bara T. Recognition and Reduction of Systematic Error in Elevation and Derivative Surfaces from 7.5 Minute DEMs[J]. Photogrammetric Engineering and Remote Sensing, 1994, 60 (2): 195-202.
  • 4Huang Y D. Evaluation of Information Loss in Digital Elevation Models with Digital Photogrammetric Systems[J]. Photogrammetric Record, 2000, 16 (95): 781-791.
  • 5Ziadat F M. Effect of Contour Intervals and Grid Cell Size on the Accuracy of DEMs and Slope Derivatives[J]. Transactions inGIS, 2007, 11(1): 67-81.
  • 6Holmes K W, Chadwick O A, Kyriakidis P C. Error in a USGS 30-meter Digital Elevation Model and Its lmpact on Terrain Modeling[J].Journal of Hydrology, 2000, 233:154 -173.
  • 7Couclelis H. The Certainty of Uncertainty: GIS and the Limits of Geographic Knowledge[J].Transactions in GIS, 2003, 7(2): 165-175.
  • 8Fisher P F. Improved Modeling of Elevation Error with Geostatistics[J]. Geolnformatlca, 1998, 2 (3) : 215-233.
  • 9Aguilar F J, Aguilar M A, Agera F. Accuracy Assessment of Digital Elevation Models Using a Non parAmetric Approach [J]. International Journal of Geographical Information Science, 2007, 21 (6): 667-686.
  • 10Lopez C. An Experiment on the Elevation Accuracy Improvement of Photogrammetrically Derived DEM [J]. International Journal of Geographical Information Science, 2002, 16(4):361-375.

二级参考文献11

  • 1岳天祥,艾南山.冰斗形态的数学模型[J].冰川冻土,1990,12(3):227-234. 被引量:20
  • 2岳天祥,杜正平.高精度曲面建模最佳表达形式的数值实验分析[J].地球信息科学,2006,8(3):83-87. 被引量:17
  • 3Evans I S. An Integrated System of Terrain Analysis and Slope Mapping[J]. Zeitschrift Fuer Geomorphologie, 1980, 36:274-295
  • 4Yue Tianxiang, Chen Shupeng, Xu Bing, et al. A Curve-theorem Based Approach for Change Detection and Its Application to Yellow River Delta[J]. International Journal of Remote Sensing, 2002, 23 (11): 2 283-2 292
  • 5Okubo T. Differential Geometry[OL]. http://en. wikipedia, org/wiki/Differential_geometry, 1987
  • 6Toponogov V A. Differential Geometry of Curves and Surfaces: A Concise Guide [J].New York: Birkhauser Boston, 2005
  • 7Trottenberg U, Oosterlee C W, Schueller A. Multigrid[M]. London: Academic Press, 2001
  • 8Brandt A. Multi-level Adaptive Solutions to Boundary-value Problems[J]. Math Comput, 1977, 31: 333-390
  • 9Nicolaides R A. On Multiple Grid and Related Techniques for Solving Discrete Elliptic Systems[J]. J Compt Phys, 1975, 19:418-431
  • 10Hackbusch W. Convergence of Multi-grid Iterations Applied to Difference Equations[J].Math Comput, 1980, 34:425-440

共引文献13

同被引文献62

  • 1李斐,张艳梅,程晓.基于ASTER立体像对提取数字高程模型的试验研究[J].测绘通报,2004(11):1-3. 被引量:15
  • 2黄幼才.测量平差抗差化和效率分析[J].武汉测绘科技大学学报,1993,18(1):33-39. 被引量:4
  • 3杨元喜.自适应抗差最小二乘估计[J].测绘学报,1996,25(3):206-211. 被引量:58
  • 4Chow T E, Hodgson M E. Effects of lidar post-spacing and DEM resolution to mean slope estimation [J]. lnterntational Journal of Geographical Information Science, 2009, 23(10): 1277-1295.
  • 5Fisher P F, Tate N J. Causes and consequences of error it, digital elevation models[J]. Progress in Physical Geography, 2006, 30(4): 467-489.
  • 6James T D, Murray T, Barrand N E, et al. Extracting photogrammetric ground control from lidar DEMs for change detection [J]. The Photogrammetric Record, 2006, 21(116): 312-328.
  • 7Queija V, Stoker J, Kosovich J. Recent US geological survey applications of lidar [J]. Photogrammetric Engineering and Remote Sensing, 2005, 71 (1): 5-9.
  • 8Darnell A R, Tate N J, Brunsdon C. Improving user assessment of error implications in digital elevation models [J]. Computers, Environment and Urban Systems, 2008, 32(4): 268-277.
  • 9Li Z. On the measure of digital terrain model accuracy [J]. The Photogrammetric Record, 1988, 12(72): 873-877.
  • 10Carlisle B H. Modelling the spatial distribution of DEM error [J]. Transactions in GIS, 2005, 9(4): 521-540.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部