期刊文献+

含三阶色散项的非线性薛定谔方程的微扰对称和近似解 被引量:2

The approximate symmetry perturbation and approximate solutions of the nonlinear Schrdinger equations with the term of third order group velocity dispersion
下载PDF
导出
摘要 利用微扰对称方法和经典李群方法的结合,研究了含三阶群速度色散(GVD)的非线性薛定谔方程,得到了该方程关于高阶微扰的近似解和约化常微分方程.并考虑了不同情况下的有限阶微扰项或无穷阶微扰的相似解和约化常微分方程. The approximate symmetry perturbation plied to study nonlinear Schroedinger equation with method combining with classical Lie group method was apthird order group velocity dispersion ( GVD ). Similarity solutions and reduction ordinary differential equation were obtained for the corresponding high order modifications. Similarity solutions and reduction equations corresponding finite and infinite order modifications were als considered under different conditions.
作者 曹晓亮 林机
出处 《浙江师范大学学报(自然科学版)》 CAS 2010年第1期56-62,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(10875106)
关键词 三阶群速度色散 微扰对称方法 经典李群约化 相似解 约化方程 the third order group velocity dispersion approximate symmetry perturbation classical Lie group method similarity solution reduction equation
  • 相关文献

参考文献3

二级参考文献32

  • 1Ablowitz M, Clarkson P 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press).
  • 2Fushchich W I and Shtelen W M 1989 J. Phys. A: Math. Gen. 22 L887.
  • 3Abdullaev F Kh, Bronski J C and Papanicolaou G 2000 Physica D 135 369.
  • 4Euier N, Shulga M W and Steeb W H 1992 J. Phys. A: Math. Gen. 25 1095.
  • 5Euler M, Euler N and KSler A 1994 J. Phys. A: Math. Gen. 27 2083.
  • 6Euler N and Euler M 1994 Nonlinear Math. Phys. 1 41.
  • 7Fushchich W I and Shtelen W H 1989 J. Phys. A: Math. Gen. 22 887.
  • 8Jiao X Y, Yao R X and Lou S Y 2008 J. Math. Phys. 49 093505.
  • 9Muraki D J and Kath W L 1991 Physica D 48 53
  • 10Li H M and Wu F M 2005 Chin. Phys. 14 1069

共引文献8

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部