摘要
In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen consumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 ℃ which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.
In order to investigate the oxidation kinetics of gas coal at low temperatures, we derived a rate equation of oxygen con-sumption during low-temperature oxidation of gas coal and deduced an E-c equation, expressing the relation between active energy E and oxygen concentration c. The reaction order n and active energy E were calculated with this equation based on experiments of static oxygen consumption tests. In addition, we proved the rationality of the E-c equation using a kinetic compensation effect and obtained the isokinetic temperature Tc. The results show that: 1) the gas coal oxidizes easily with increasing temperature and the oxidation tends to be spontaneous at higher temperatures; 2) the oxygen concentration c affects oxygen consumption very much at lower temperatures but has only a small effect at higher temperatures; 3) the isokinetic temperature Tc was 127 °C which has been experimentally validated as the key turning point during low-temperature spontaneous combustion of gas coal.
基金
financial support provided by the National Key Technology R&D Program during the 11th Five-Year Period (No. 2006BAK03B05)
the National Natural Science Foundation of China (Nos.50534090, 50674090 and 50804047)
the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety, China University of Mining and Technology (Nos.08KF14 and SKLCRSM09X04)
the Scien-tific Research Foundation of China University of Mining & Technology (No.2007A001)