期刊文献+

砂带磨削机器人的灵活性分析与优化 被引量:17

Dexterity Analysis and Optimization of Belt Grinding Robot
下载PDF
导出
摘要 总结了磨削机器人的当前发展和阻碍砂带磨削机器人广泛应用的难点.根据复杂曲面磨削任务对机器人的实际要求,提出了一种磨削机器人构型.这种机器人属于PPPRRR构型,具有很高的定位精度和结构刚度.利用旋量理论中的指数积公式推导了该机器人的运动学正反解.引入了模拟退火算法,分析获得了相对于末端坐标系描述的砂带磨削机器人的灵活磨削空间,并绘制了灵活磨削空间的横截面图谱.进一步,采用模式搜索法,优化了磨削机接触轮相对于机器人基坐标系的位移偏移量,获得了最大的灵活磨削空间体积,提高了机器人砂带磨削系统的灵活性. The current developments and major stumbling blocks that prevent widespread use of belt grinding robot are concluded. Based on the requirements of the complex surface grinding task, a new type of grinding robot, PPPRRR, is proposed. The robotic type features its high accuracy and high structural stiffness. Product of exponentials formula in twist theory is used to derive the kinematical and inverse kinematical equations of the belt grinding robot. Simulated annealing algorithm is used to analyze the dexterous grinding workspace with respect to the coordinate system of end effector, and the cross section drawings of the dexterous grinding space are drawn. Furthermore, the belt grinder's position with respect to the robot base is optimized with the pattern search method to obtain the maximum volume of the dexterous grinding workspace, which improves the dexterity of the robotic belt grinding system.
作者 王伟 贠超
出处 《机器人》 EI CSCD 北大核心 2010年第1期48-54,共7页 Robot
基金 国家863计划资助项目(2007AA04Z2443)
关键词 砂带磨削机器人 旋量理论 灵活磨削空间 模拟退火算法 模式搜索法 belt grinding robot twist theory dexterous grinding workspace simulated annealing algorithm pattern search method
  • 相关文献

参考文献13

  • 1Sun Y. Development of a unified flexible grinding process[D]. USA: University of Connecticut, 2004.
  • 2黄云,黄智.砂带磨削的发展及关键技术[J].中国机械工程,2007,18(18):2263-2267. 被引量:52
  • 3Whitney D E, Brown M L. Metal removal models and process planning for robot grinding[C]//17th International Symposium on Industrial Robots. 1987: 19-29.
  • 4Persoons W, Vanherck P. A process model for robotic cup grinding[J]. CIRP Annals - Manufacturing Technology, 1996, 45( 1): 319-325.
  • 5Sun Y, Giblin J, Kazerounian K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1): 204-210.
  • 6王东署,李光彦,徐方,徐心和.机器人标定算法及在打磨机器人中的应用[J].机器人,2005,27(6):491-496. 被引量:13
  • 7Huang H, Gong Z, Chen X Q, et al. Smart robotic system for 3D profile turbine vane airfoil repair[J]. Intemationai Journal of Advanced Manufacturing Technology, 2003, 21(4): 275-283.
  • 8毕诸明.机器人姿态空间的分析与综合[J].机械科学与技术,1996,15(1):11-16. 被引量:14
  • 9Craig J J. Introduction to robotics: Mechanics and control[M]. Beijing: China Machine Press, 2005.
  • 10徐卫良.机器人工作空间分析的蒙特卡洛方法[J].东南大学学报(自然科学版),1990,20(1):1-8. 被引量:11

二级参考文献33

  • 1黄云,黄智.中国砂带磨削技术产业化进程的战略与思考[J].制造技术与机床,2004(11):29-32. 被引量:10
  • 2徐卫良,机器人,1988年,2卷,4期,1页
  • 3王兴海,1986年
  • 4郑时雄,机器人操作手.数学、编程与控制,1986年
  • 5盛晓敏 邓朝晖 周志雄.高效磨削技术发展前瞻[J].湖南大学学报,1999,.
  • 6Minor M, Ra M. A dexterous minipulator for minimally invssive surgery[ A]. Proceedings of the 1999 IEEE International Conference on Robotics & Automation[ C]. Detroit, Michigan, 1999
  • 7Yang D C H, Lai Z C. On the dexterity of robotics manilulators-service angle[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(3): 162 - 270
  • 8Song S M, Lei Chimeng, Wang Jiang. The end-effector angle and manipulator dexterous workspace [ J ]. ASME Journal of Mechanical Design, 1990, 112(3): 278 - 282
  • 9Lai Z C, Meng C H. The dexterous workspace of simple manipulators [J]. IEEE Journal of Robotics and Automation, 1988, 4(1): 99 -105
  • 10Charles S, Dss H, Ohm T, et al. Dexterity-enhanced telerobotic microsurgery[J]. Advanced Robotics, 1997,7:5 - 10

共引文献120

同被引文献138

引证文献17

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部