期刊文献+

Skinner操作条件反射的一种仿生学习算法与机器人控制 被引量:3

A Bionic Learning Algorithm Based on Skinner's Operant Conditioning and Control of Robot
下载PDF
导出
摘要 针对两轮自平衡机器人的运动平衡控制问题,提出了基于Skinner操作条件反射理论的BP神经网络与资格迹相结合的仿生自主学习算法作为两轮机器人的学习机制.该算法利用资格迹能解决延迟影响、加快学习速度和提高可靠性的特点,将其与BP神经网络相结合构成复合学习算法,能够预测机器人将要获得的行为评价函数,并依据概率取向机制以一定的概率选择最大评价值对应的最优行为,从而使机器人能够在未知环境下通过与环境的交互、学习和训练,获得像人或动物一样的自主学习技能,实现对两轮机器人的运动平衡控制.最后,分别用基于Skinner操作条件反射理论的BP算法和BP资格迹复合算法对两轮机器人做了仿真实验并进行了比较.结果表明,基于Skinner操作条件反射理论的BP资格迹复合仿生自主学习算法的学习机制能够使机器人获得良好的动态性能和较快的学习速度,体现了机器人较强的自主学习技能和平衡控制能力. Aiming at the movement balance control problem of the two-wheeled self-balancing mobile robot, a bionic self-learning algorithm consisting of BP (backpropagation) neural network and eligibility traces based on Skinner's operant conditioning theory is put forward as a learning mechanism of the two-wheeled robot. The algorithm utilizes the characters of eligibility traces in resolving delay effect, increasing learning speed, and improving reliability and ability, so that the complex learning algorithm consisting of BP neural network and eligibility traces can predict the behavior evaluation function that the robot would obtain, and choose the optimum action corresponding to the biggest evaluation value according to the probability tendency mechanism by a certain probability. Thereby the two-wheeled robot can obtain the self-learning skills like a human or animal by interacting with, studying and training the unknown environment, and realize the movement balance control of the two-wheeled robot. Finally, two simulation experiments are done and compared using the BP algorithm and the complex learning algorithm consisting of BP neural network and eligibility traces based on Skinner's operant conditioning theory. The simulation results show that the learning mechanism of the complex learning algorithm consisting of BP neural network and eligibility traces based on Skinner's operant conditioning theory makes the robot obtain the better dynamic performance and the quicker learning speed, and reflect stronger self-learning skills and balance control abilities.
出处 《机器人》 EI CSCD 北大核心 2010年第1期132-137,共6页 Robot
基金 国家863计划资助项目(2007AA04Z226) 国家自然科学基金资助项目(60774077) 北京市教委重点资助项目(KZ200810005002) 北京市人才强教计划项目 高等学校博士学科点专项科研基金资助课题
关键词 Skinner操作条件反射 资格迹 自主学习 平衡控制 两轮机器人 Skinner's operant conditioning eligibility trace self-learning balance control two-wheeled robot
  • 相关文献

参考文献14

  • 1高阳,陈世福,陆鑫.强化学习研究综述[J].自动化学报,2004,30(1):86-100. 被引量:262
  • 2张文志,吕恬生.强化学习理论在机器人应用中的几个关键问题探讨[J].计算机工程与应用,2004,40(4):69-71. 被引量:2
  • 3Skinner B E The behavior of organisms[M]. New York, USA: Copley Publishing Group, 1938.
  • 4Wolf R, Heisenberg M. Basic organization of operant-behavior as revealed in drosophila flight orientation[J]. Journal of Comparative Physiology A, 1991, 169(6): 699-705.
  • 5Rosen B E, Goodwin J M, Vidal J J. Machine operantconditioning[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ, USA: IEEE, 1988: 1500-1501.
  • 6Gaudiano P, Chang C. Adaptive obstacle avoidance with a neural network for operant conditioning: Experiments with real robots[C]//IEEE International Symposium on Computational Intelligence in Robotics and Automation. Piscataway, NJ, USA: IEEE, 1997: 13-18.
  • 7Zalama E, Gomez J, Paul M, et al. Adaptive behavior navigation of a mobile robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A - Systems and Humans, 2002, 32(1): 160-169.
  • 8Itoh K, Miwa H, Matsumoto M, et al, Behavior model of humanoid robots based on operant conditioning[C]//IEEE/RAS International Conference on Humanoid Robots. Piscataway, N J, USA: IEEE, 2005: 220-225.
  • 9Dominguez S, Zalama E, Garcia-Bermejo J G, et al. Robot learning in a social robot[M]//Lecture Notes in Computer Science, vol.4095. Berlin, Germany: Springer-Verlag, 2006: 691- 702.
  • 10Singh S P, Sutton R S. Reinforcement learning with replacing eligibility traces[J]. Machine Learning, 1996, 22(1/2/3): 123- 158.

二级参考文献29

  • 1金尚年.经典力学:第一版[M].上海:复旦大学出版社,1990..
  • 2王毓东.电机学:第一版[M].浙江:浙江大学出版社,1990..
  • 3[1]Sutton R S.Learning to Predict by the Methods of Temporal Difference[J].Machine Learning, 1988; (3): 9~44
  • 4[2]Watkins J C H,Dayan Peter. Q-Learning[J].Machine Learning,1992;(8):279~292
  • 5[3]Barto Andrew G,Sutton Richard S et al. Neural-like Adaptive Elements That can Solve Difficult Learning Control Problem[J].IEEE Trans on S M and C,1983;13(5):843~846
  • 6[4]Yung N H C,Cang Ye. An Intelligent Mobile Vehicle Navigator Based on Fuzzy Logic and Reinforcement Learning[J].IEEE Trans on Sys Man and Cyber,Part B,1999;29(2):314~321
  • 7[5]F Fernandz,L E Parker. Learning in Large Cooperative Multi-robot Domains[J].Intemational J of Robot and Automation,2001; (4) :217~226
  • 8[6]Touzet C.Neural Reinforcement Learning for Behavior Synthesis[J].Robotics and Autonomous System,Special Issue on learning robots:The New Wave,1997;22:251~281
  • 9[7]Smith,Andrew James. Applications of the Self-organising Map to Reinforcement Learning[J].Neural Networks,2002; 15:1107~1124
  • 10[8]Samejima K,Omori T.Adaptive Internal State Space Construction Method for Reinforcement Learning of a Real-world Agent[J].Neural Networks, 1999; 12:1143~1155

共引文献312

同被引文献25

  • 1Riemann B L, Lephart S M. The sensorimotor system, Part I: The physiologic basis of functional joint stability[J]. Journal of Athletic Training, 2002, 37(1): 71-79.
  • 2Houk J C, Gibson A R. Sensorimotor processing through the cerebellum[M]//New Concepts in Cerebellar Neurobiology. USA: John Wiley & Sons, 1987: 387-416.
  • 3Rosen B E, Goodwin J M, Vidal J J. Machine operant condi- tioning[C]//Annual International Conference of the IEEE Engi- neering in Medicine and Biology Society. Piscataway, NJ, USA: IEEE, 1998: 1500-1501.
  • 4Dominguez S, Zalama E, Garcfa-Bermejo J G, et al. Robot learning in a social robot[M]//Lecture Notes in Computer Sci- ence, vol.4095. Berlin, Germany: Springer-Verlag, 2006: 691- 702.
  • 5Hoffmann H. Perception through visuomotor anticipation in a mobile robot[J]. Neural Networks, 2007, 20(1): 22-33.
  • 6Touretzky D S, Saksida L M. Operant conditioning in Skinner- bots[J]. Adaptive Behavior, 1997, 5(3/4): 219-247.
  • 7Saksida L M, Raymond S M, Touretzky D S. Shaping robot behavior using principles from instrumental conditioning[J]. Robotics and Autonomous Systems, 1997, 22(3/4): 231-249.
  • 8林永惠.经典性条件反射同操作性条什反射的异同[J].渤海学刊,1997(1):73-76.
  • 9Lasserson D. Nervous system and special senses[M]. Beijing: Science Press, 2002.
  • 10Schultz W, Dayan R Montague P R. A neural substrate of pre- diction and reward[J]. Science, 1997, 275(5306): 1593-1599.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部