期刊文献+

自适应模糊系统在车削工件直径误差预测中的应用研究 被引量:1

Research on the application of self-adaptive fuzzy system used in the error prediction for turning a work-piece diameter
下载PDF
导出
摘要 根据车削过程中工件直径误差的特点,提出了用自适应模糊系统预测由弹性变形等因素引起的工件直径误差的思路,通过梯度下降算法训练M amdan i型模糊系统,以确定合理的系统参数。根据工件直径误差与切削深度、进给量等的关系,进行车削实验,得到训练数据和测试数据,用训练数据训练模糊系统,进而用测试数据进行测试,得到结果合理,从而验证了利用自适应模糊系统进行工件直径误差预测的可行性。和回归分析的预测值进行比较,比较结果显示了自适应模糊系统在车削工件直径误差预测方面的应用具有优势。 According to the characteristics of diameter error of work-piece in the turning process, a train of thought of using the serf-adaptive fuzzy system to predict the work-piece diameter error caused by factors of elastic deformation etc. has been put forward. By means of gradient descent algorithm to train the Mamdani typed fuzzy system so as to ascertain the rational systematic parameters. On the basis of the relationship between the work-piece diameter error and the cutting depth, feed-rate etc. to carrying out turning test so as to acquire the training data and the testing data. Use the training data to train the fuzzy system, and then use the testing data to carrying out the test and obtained reasonable result, thus verified the feasibility for carrying out error prediction of work-piece diameter by the use of serf-adaptive fuzzy system. Carrying out comparison with the predicted value of regression analysis, and the result of comparison showed that the self-adaptive fuzzy system possesses superiority on the application on error prediction aspect for turning work-piece diameter.
作者 王刚 张卫红
出处 《机械设计》 CSCD 北大核心 2010年第1期26-30,共5页 Journal of Machine Design
基金 航空科学基金资助项目(2008ZE53038) 国家科技支撑计划资助项目(2008BAF32B04) 西北工业大学基础研究基金资助项目(2008JC10)
关键词 工件直径误差 自适应模糊系统 弹性变形 梯度下降算法 work-piece diameter error self-adaptive fuzzy system elastic deformation gradient descent algorithm
  • 相关文献

参考文献10

  • 1Liu ZH Q. Finite difference calculations of the deformations of multidiameter workpieces during turning[J]. Journal of Materials Processing Technology,2000,98 : 310 - 316.
  • 2Mayer J R R, Phan A-V, Cloutier G. Prediction of diameter errors in bar turning: a computationally effective model[ J ]. Applied Mathematical Modeling ,2000,24:943 -956.
  • 3Carrino L, Giorleo G, Polini W, el at. Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part Ⅰ: Three-dimensional theory [J]. International Journal of Machine Tools & Manufacture ,2002,42 : 1509 - 1515.
  • 4Carrino L,Glorleo G,Polini W,el at. Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part Ⅱ: Machining process analysis and dimensional error estimate[J]. International Journal of Machine Tools & Manufacture, 2002,42:1517 - 1525.
  • 5Phan A - V,Mayer J R R,Cioutier G. Finite element and experimental studies of diametral errors in cantilever bar turning [ J ]. Applied Mathematical Modelling,2003,27:221 - 232.
  • 6Guo J L, Hart R D. A united model of diametral error in slender bar turning with a follower rest [ J ]. International Journal of Machine Tools & Manufacture,2006,46 : 1002 - 1012.
  • 7Bendados P G, Mosialos S, Vosniakos GC. Prediction of workpiece elastic deflections under cutting forces in turning [ J ]. Robotics and Computer - Integrated Manufacturing,2006 : 505 - 514.
  • 8Bendados P G ,Vosniakos GC. Optimizing feedforward artificial neural network architecture [ J ]. Engineering Applications of Artificial Intelligence,2007:365 - 382.
  • 9武星星,朱喜林,李晓梅.基于混合输入型模糊系统的机械加工参数优化[J].中国机械工程,2007,18(3):273-277. 被引量:2
  • 10武星星,朱喜林,杨会肖.自适应神经模糊推理系统改进算法在机械加工参数优化中的应用[J].机械工程学报,2008,44(1):199-204. 被引量:11

二级参考文献15

  • 1李曦,曹广益,朱新坚.基于系统辨识的PEMFC温度非线性建模与预测[J].中国机械工程,2005,16(10):873-877. 被引量:4
  • 2卢秉恒 于骏一 张福润.机械制造技术基础[M].北京:机械工业出版社,2001..
  • 3Hori T,Tanaka K,Wang H O.A Piecewise Takagi-Sugeno Fuzzy Model Construction and Relaxation of Stability Conditions[C]// IEEE Control Systems Society.Proceedings of the IEEE Conference on Decision and Control.Las Vegas:Institute of Electrical and Electronics Engineers Inc.,2002:2149-2150.
  • 4Park C W,Kang H J.Graphical and Numerical Approach to Robust Stability Analysis of Fuzzy Modeled Systems with Parametric Uncertainty and Disturbance[J].Fuzzy Sets and Systems,2005,151(1):99-117.
  • 5Choi Y J,McCarthy K L.A MATLAB Graphical User Interface Program for Tomographic Viscometer Data Processing[J].Computers and Electronics in Agriculture,2005,47(1):59-67.
  • 6Chen S M,Tsai F M.A New Method to Construct Membership Functions and Generate Fuzzy Rules from Training Instances[J].International Journal of Information and Management Sciences,2005,16(2):47-72.
  • 7Lotfi A Z,Berkeley C A.Fuzzy Logic Toolbox User's Guide for Use with MATLAB[M].Natick:The MathWorks Inc.,2005.
  • 8BESDOK E.Impulsive noise suppression from images by using anfis interpolant and lillietest[J].Eurasip Journal on Applied Signal Processing,2004,16(11):2 423-2433.
  • 9ABDENNOUR A.Short-term MPEG-4 video traffic prediction using ANFIS[J].International Journal of Network Management,2005,15(6):377-392.
  • 10LIN Z C,LIU C Y.Analysis and application of the adaptive neuro-fuzzy inference system in prediction of CMP machining parameters[J].International Journal of Computer Applications in Technology,2003,17(2):80-89.

共引文献10

同被引文献13

  • 1王刚,张卫红.基于递推最小二乘算法的模糊系统在车削工件直径误差预测中的应用[J].机械强度,2010,32(6):953-960. 被引量:2
  • 2黄树涛,贾春德,姜增辉,于骏一.高速车铣已加工表面粗糙度的理论与实验研究[J].哈尔滨工业大学学报,2005,37(5):717-720. 被引量:7
  • 3Hecker R L, Liang S Y. Predictive modeling of surface roughness in grinding[ J]. International Journal of Machine Tools & Manufacture, 2003, 43 (8) : 755-761.
  • 4Cakir M C, Ensarioglu C, Demirayak I. Mathematical mod- eling of surface roughness for evaluating the effects of cutting parameters and coating material [ J ]. Journal of Materials Processing Technology, 2009, 209(1): 102-109.
  • 5Sahin Y, Motorcu A R. Surface roughness model in machi- ning hardened steel with cubic boron nitride cutting tool[ J ]. International Journal of Refractory Metals & Hard Materials, 2008, 26(2) : 84-90.
  • 6Davidson M J, Balasubramanianb K, Tagore G R N. Surface roughness prediction of flow-formed AA6061 alloy by design of experiment [ J ]. Journal of Materials Processing Technolo- gy, 2008, 202(1/2/3): 41-46.
  • 7Huang B P, Chen J C, Li Ye. Artificial-neural-networks- based surface roughness Pokayoke system for end-milling op- erations[ J ]. Neurocomputing, 2008, 71 ( 4/5/6 ) : 544- 549.
  • 8Basheer A C, Dabade U A, Joshi S S, et al. Modeling of surface roughness in precision machining of metal matrix composites using ANN [ J ]. Journal of Materials Processing Technology, 2008, 197 ( 1/2/3 ) : 439-444.
  • 9Karayel D. Prediction and control of surface roughness in CNC lathe using artificial neural network[ J ]. Journal of Materials Processing Technology, 2009, 209 ( 7 ) : 3125- 3137.
  • 10Zain A M, Haron H, Sharif S. Prediction of surface rough- ness in the end milling machining using artificial neural net- work [ J ]. Expert System with Applications, 2010, 37 ( 2 ) : 1755-1768.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部