期刊文献+

基于Web投票机制的免疫协同过滤推荐技术研究

Research on Rating-based Collaborative Filtering Recommendation Technology Inspired Immune System
下载PDF
导出
摘要 针对投票机制的个性化推荐系统,利用人工免疫网络模型的动态适应性、自组织性等特性,通过构建用户的兴趣模型来设计用户投票行为的抗体(抗原)编码及交叉克隆算子,并通过人工免疫网络模型来产生高效的推荐结果。 A novel technology inspiring artificial immune network model was applied to the task of rating-based recommendation technology by collaborative filtering (CF).The concept of user's multiple interests model was introduced, users who have voted represents the set of antigens and antibody, a top-N list is generated as a recommendation to the active user by artificial immune network model.
出处 《农业网络信息》 2010年第1期11-14,共4页 Agriculture Network Information
关键词 推荐系统 协同过滤 人工免疫网络模型 recommendation systems collaborative filtering artificial immune network
  • 相关文献

参考文献2

二级参考文献39

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献654

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部