期刊文献+

锡铜锌氧合金负极材料的电化学性能

Electrochemical performance of the Cu-Sn-Zn-O alloy anode materials
下载PDF
导出
摘要 采用两步脉冲电镀和低温热处理相结合的方法制备了锡铜锌氧合金;采用充放电循环、循环伏安、X射线粉末衍射、电镜、能谱等现代技术研究了样品的电化学性能与制备条件的关系.实验结果表明:当铜膜上电镀锡层与电镀锌层均用时2min时,制备的样品以100mA/g的电流在1.7~0.01V充放电时,首次放电容量为525mAh/g.30循环的库仑效率均高于90%,这对于寻找匹配的正极材料十分有利. Sn-Cu-Zn-O alloys were prepared by two-step pulse-electroplating and heat treatment process at low temperature. Charge-discharge cycles, cyclic voltammogram, SEM, EDAX and other advanced techniques were employed to study the electrochemical performances of the as-prepared samples. The experimental results indicate that the alloy sample prepared by plated Tin and Zinc layers for two minutes respectively shows the best electrochemical performance in all samples. The initial capacity of the as-prepared sample is 525 mAh/g at a current of 100 mA/g in the voltage range of 1.7 to 0.01 V( vs. Li ^+/Li). During the 30 cycles, the column efficiency of the as-prepared sample is as hither as 90%. which is benefit for selection of cathode materials.
出处 《吉林化工学院学报》 CAS 2010年第1期15-19,共5页 Journal of Jilin Institute of Chemical Technology
基金 福建省教育厅基金资助项目(JA07033) 福建省自然科学基金资助项目(2008J0144) 福建省科技厅基金资助项目(2009I0007)
关键词 锂离子电池 脉冲电镀 锡铜锌氧合金 负极材料 lithium-ions batteries pulse plating Sn-Cu-Zn-O alloy anode material
  • 相关文献

参考文献10

  • 1Kepler K D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [ J ]. J. Power Sources, 1999,81-82:383-387.
  • 2Hu R Z,Zeng M Q, Zhu M. Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition [ J ]. Electrochem. Acta, 2009, 54 ( 10 ) : 2 843-2 850.
  • 3Ke F S, Huang L, Cai J S, et al. Electroplating synthesis and electrochemical properties of macroporous Sn- Cu alloy electrode for lithium-ion batteries [ J ]. Electrochem. Acta,2007,52(24) :6 741-6 747.
  • 4Pu W, He X, Ren J, et al. Electrodeposition of Sn-Cu alloy anodes for lithium batteries [ J ]. Electrochem. Acta,2005,50(20) :4 140-4 145.
  • 5Tong Q S, Yang Y, Shi J C, et al. Synthesis and storage performance of the doped LiMn2O4 spinel [ J ]. J. Electrochem. Soc. ,2007,154 (7) : A656-A667.
  • 6Shin H C,Liu M L. Three-Dimensional Porous Copper- Tin Alloy Electrodes for Reehargeable Lithium Batteries [ J ]. Advanced Functional Materials, 2005,15 (4) :582-586.
  • 7Marcinek M, Hardwick L J, Richardson T J, et al. Microwave plasma chemical vapor deposition of nano- structured Sn/C composite thin-film anodes for Liion batteries [ J ]. J. Power Sources, 2007,173 : 965-971.
  • 8Shin N R, Kang Y M, Song M S, et al. Effects of Cu Substrate Morphology And Phase Control on Electro- chemical Performance of Sn-ni Alloys For Li-ion Battery [ J ]. J. Power Sources,2009,186 ( 1 ) :201-205.
  • 9Singh D, Kim W S, Craciun V, et al. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition[ J]. Applied Surface Science,2002,197-198:516-521.
  • 10Zhang J J, He P, Xia Y Y. Electrochemical kinetics study of Li-ion in Cu6 Sn5 electrode of lithium batteries by PITY and EIS [ J ]. J. Electroanal. Chem, 2008,624 (1-2) :161-166.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部