期刊文献+

几何分布产品不完全数据场合下的统计分析 被引量:2

The Statistical Analysis of Geometric Distribution Based on Incomplete Data
下载PDF
导出
摘要 几何分布是离散型寿命分布中最为重要的分布之一,许多产品的寿命(比如开关等)都可以用几何分布来描述。由于几何分布的无记忆性,它在可靠性理论与应用概率模型中有着非常重要的地位。目前,对关于几何分布在全样本场合、截尾样本场合以及加速寿命试验场合下参数的统计分析已经有了广泛的研究,并且有着重要的理论与应用价值。因此将不完全数据场合下的几何分布问题转化为指数分布问题,再利用指数分布的已有结果首次得到了几何分布在缺失数据场合和分组数据场合下参数的近似点估计,Monte-Carlo模拟算例结果令人满意,说明该方法是可行的。 Geometric distribution is one of the most important discrete life distributions. The hves of many products such as the switch can be described as the geometric distribution. Besides, the geometric distribution has played an important role in the reliability theory and the applied probability model because of its nonmemory property. The geometric distribution has widely studied on the statistical analysis of its parameter in the case of the full sample, the censored sample and the accelerated life test, which has obtained the important theory and application value. In this paper, the problem of geometric distribution with the incomplete data is translated into that of the exponential distribution. Then based on the missing data and grouped data with the geometric distribution, the approximate point estimates of parameters are firstly obtained by using the conclusions of exponential distribution. In addition, the results of some examples by Monte- Carlo simulations are satisfactory, which also illuminates the feasibility of the methods.
出处 《统计与信息论坛》 CSSCI 2010年第2期16-19,共4页 Journal of Statistics and Information
基金 上海师范大学科研项目<混合模型的可靠性统计分析>(SK200811) 上海市重点学科(S30405) 科学计算上海高等学校重点实验室 2009年上海市教委<概率论与数理统计重点课程> 上海师范大学第五期重点学科(DZL805)资助
关键词 几何分布 缺失数据 分组数据 点估计 geometric distribution missing data grouped data point estimate
  • 相关文献

参考文献16

二级参考文献40

  • 1高鹏遐,吴绍敏.几何分布场合步加应力寿命试验的贝叶斯分析[J].华侨大学学报(自然科学版),1994,15(2):139-147. 被引量:4
  • 2齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13.
  • 3王作英 曹洪.语音识别的改进隐含马尔可夫模型.863智能计算机系统主题学术会议[M].北京,1988..
  • 4计天颖.一种汉语连续语音识别的算法及其实现.博士学位论文[M].清华大学,1995..
  • 5张连增.聚合风险理论的索赔次数模型.精算通讯,2002,2(1):39-44.
  • 6Bhoj,Dineshs, Absanullah,M. Estimation of the generalized geometric distribution using ranked set sampling[J]. Biometrics,1996,52: 685-694.
  • 7Best D.J,Rayner J.C.W. Test of fit for the geometric distribution[J]. Communication in Statistics Theory and Methods, 2003,32(5): 913-928.
  • 8Best D.J, Rayner J.C.W. Goodness of fit the geometric distribution[J]. Bion.J. 1989,31:307-311.
  • 9Zheng Zhongguo, Fang Kai-Tai. Bayesian Procedure in Time Sequential Sample Plan. TechnicalReport, Dept. of Probability and Statistics, Peking University, 1995.
  • 10Gardiner J C, Susarla V, Kyzin J V. Time Sequential Estimation of the Exponmential Mean under Random Withdrawls. The Annals of Statistics, 1986, 14(2): 607-618.

共引文献47

同被引文献22

  • 1徐晓岭,孙祝岭,王磊.几何分布参数的区间估计和统计贴近性研究[J].强度与环境,2005,32(2):57-63. 被引量:10
  • 2王蓉华,徐晓岭,芦菁晶.指数分布产品分组数据的统计分析[J].强度与环境,2006,33(3):61-64. 被引量:4
  • 3Joseph L S,John W G. Missing data:our view of the state of the art[J].Psychological Methods,2002,(02):147.
  • 4Deshpande J V,Purohit S G. Survival,hazard and competing risks[J].Current Science,2001,(09):1191.
  • 5Boyd S,Vandenberghe L. Convex optimization[M].Cambridge:Cambridge University Press,2004.
  • 6Ahsanullah M. Record values-theory and applications[M]. Lanham=University Press of America,2004.
  • 7Zhao P, Li X H, Li Z P. Stochastic comparisons of spacings of record values from one or two sample sequences[J]. Statistics: A Journal of Theoretical and Applied Statistics, 2008, 42(2) : 167-177.
  • 8Lehmann E L, Casella G. Theory of point estimation[M]. 2nd ed. New York= Springer-Verlag, 2003.
  • 9Nelson W. Applied life data analysis[M]. New York:John Wiley, 1982.
  • 10Mathachan P. Some inference problems related to Geometric distribution[D]. Tennessee= Department of Mathematics Union Christian College of Mahatma Gandhi University,2007.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部