期刊文献+

基于改进Sammon映射的辐射源个体特征有效性分析 被引量:3

Validity Analysis of Emitter Individual Features Based on An Improved Sammon Mapping
下载PDF
导出
摘要 Sammon映射算法将特征数据从高维映射到低维可视空间,并保持了高维空间中数据样本点之间的距离,可以对数据特征的有效性进行直观的可视化研究。利用自组织映射对特征数据的样本数量进行压缩预处理,降低Sammon算法的计算量,由此提出了改进型的SOSammon算法。通过对实测数据的分析表明,改进算法速度上优于原始算法,能够较好显示个体特征的散布特性。 Sammon mapping is an non-linear projection to mensional image, well keeping the dissimilarity of original visualize high-dimensional data as low-didata points, it can be applied as analytic technique of emitter individual feature. It is presented that a new Sammon algorithm named SOSammon using self-organization mapping to compress the pattern number of feature data, which reduce the large numerical calculation. The analysis result of real data shows that the improved algorithm has better performance, and has better vision of dispersion characteristic of individual feature.
出处 《电子信息对抗技术》 2010年第1期21-24,40,共5页 Electronic Information Warfare Technology
关键词 有效性分析 可视化 Sammon映射 降维 个体识别 validity analysis visualization Sammon mapping dimensional reduction individual identification
  • 相关文献

参考文献6

  • 1RICHARDOD,PETEREH,DAVIDGS.模式识别[M].北京:机械工业出版社,2003.
  • 2SAMMON J W. A Nonlinear Mapping for Data Structure Analysis [J]. IEEE Tracsactions on Conputers, 1969,18 (5) : 491 - 409.
  • 3LERNER B, GUTERMAN H, ALADJEM M, DINDTEIN I, ROMEM Y. Feature Extraction by Neural Network Nonlinear Mapping for Pattern Classiflcation [ C ]//13 th International Conference on Pattern Recognition (ICPR' 96), 1996 : 320 - 324.
  • 4MAO J, JAIN A K. Artificial Neural Networks for Feature Extraction and Multivariate Data Projection [ J]. IEEE Trans Neural Networks, 1995, 6(2) : 296 - 317.
  • 5KENNETTH I, TALBOT, PAUL T D, MARTIN H H. Specific Emitter Identification and Verificaion [ J ]. Technology Review Journal, 2003, 11 ( 1 ) : 203 - 209.
  • 6TEKBAS O H, SERINKEN H, URETEN O. An Experiment Performance Evaluation of A Novel Radio-Trransmitter Identification System under Diverse Environmental Conditions [J]. Can J Elect Comput Eng, 2004, 29(3) : 203 - 209.

同被引文献39

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部