摘要
数据校正之前,必须首先确定校正对象的状态,即稳态检验。校正对象的状态通常分为稳态、准稳态和动态3类。目前的稳态检验方法都是"动态"和"稳态"的二值判别模式,只能给出对象状态的定性判断,这在绝大多数实际情况下是不尽合理的。本研究基于模糊集的思想设计了一种新的稳态检验方法,不再将校正对象的状态定性的分为"动态"和"稳态"2类,而是将对象在时域上可能出现的所有状态作为一个模糊集,每一时刻的状态都对应模糊集中的一个具体元素,从而使校正对象的状态有了定量的衡量指标,进而可以显著提高判别的区分度,为数据校正策略提供更加精确的状态参考。
It must be made certain process state before data reconciliation, which is detection of steady state. There are three states of the process: steady state,dynamic state and the transition state. The usual methods for the detection of steady state are all dimorphism detection: dynamic state or steady state. They only give a qualitative detection of the process state and this is inconsequence in most real conditions. In this paper, a new method for the detection of steady state based on fuzzy sets is proposed. It no longer classifies qualitatively the process state only two kinds: dynamic state and steady state. It utilizes fuzzy sets to express process state and quantifies every state of the process u- sing fuzzy formulas. This gives a quantitative weigh index of process state,augments differentiation degree of state detection and provides a more precise state reference for data reconciliation.
出处
《青岛科技大学学报(自然科学版)》
CAS
2010年第1期91-95,共5页
Journal of Qingdao University of Science and Technology:Natural Science Edition
基金
山东省自然科学基金项目(Y2008G14)
上海市基础研究重点项目(08JC1408200)
关键词
数据校正
稳态检验
模糊集
data reconciliation
detection of steady state
fuzzy sets