期刊文献+

槽型抛物面太阳能热发电系统在国内典型地区的仿真分析与对比研究 被引量:2

Simulation of parabolic trough solar power generating system for typical Chinese sites
下载PDF
导出
摘要 作为一种适宜于大规模并网发电的太阳能转换技术,槽型抛物面太阳能热发电日益成为国际上的研究和应用热点。我国内蒙古地区由于同时具有充足的直射辐射资源、广阔的未利用土地,以及较为便捷的基础设施等有利条件,适合作为未来建设太阳能电站的候选地点加以考虑。以内蒙古奈曼地区为背景,以TRN-SYS软件为工具,建立了35 MW槽型抛物面太阳能电站的模型,通过系统仿真的方法对电站的运行性能进行了分析,借此探讨该项技术在我国典型地区的可行性;为比较不同气象条件对系统的影响,选择了西藏拉萨地区对相同的电站系统进行了模拟和比较。结果表明,由于太阳能资源的差别,奈曼和拉萨两地电站的年发电量分别为37 271.10 MW.h和66 541.08 MW.h,两者相差78.5%。提出了入射直射辐射强度IDR这一概念,并通过系统仿真得出其比目前国际上通行的直射辐射强度DNI更加适宜作为聚焦式太阳能电站的太阳能资源评估指标。 Parabolic trough solar power (PTSP) is pursued worldwide, for it is suitable to generate grid power from solar energy. With abundant solar energy resources, large waste land and complete infrastructure, the Inner Mongolia Autonomous Region can be selected as a candidate to locate the PTSP plant in the future. In this paper, a PTSP plant of 35 MW was simulated with Solar Thermal Electric Components (STEC) model in the environment of TRNSYS (version 16) for Naiman, a county in Inner Mongolia, to study feasibility of this technology in typical sites in China. Also a same plant located in Lhasa, Tibet, was simulated and the results were compared with those of Naiman, to study the influence of different weather condition to the system performance. The results indicate that the annual elec- tricity output of Naiman plant is 37 271.10 MW" h, 78.5 % lower than that of Lhasa plant, 66 541.08 MW- h. Also this paper raises the definition of Incident Direct Insolation (IDR), and verified from simulation that it is more suitable than DNI to evaluate the solar resource for a certain site to locate concentrating solar power plant.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2010年第1期28-32,共5页 Journal of North China Electric Power University:Natural Science Edition
基金 "十一五"国家科技支撑计划重大项目基金资助项目(2006BAJ03A06) 鲁东大学2009大学生科技创新基金基金资助项目(09L042) 鲁东大学人才基金基金资助项目(LY20086201)
关键词 槽型抛物面太阳能热发电系统 系统仿真 内蒙古 TRNSYS parabolic trough solar power plant simulation Inner Mongolia TRNSYS
  • 相关文献

参考文献2

二级参考文献23

  • 1张绍强,张运章.我国煤炭资源、生产与环境概况[J].环境保护,2006,34(07A):53-57. 被引量:32
  • 2Kahrl F,Roland-Hoist D.China's carbon challenge:insights from the electric power sector[R].Berkeley,California,2006.
  • 3Theocharis T,Vasilis G,Katerina M.Technical and economical evaluation of solar thermal power generation[J].Renewable Energy,2003,28(6):873-886.
  • 4Cohen G,Kearney D W,Cable R G.Recent improvements and performance experience at the Kramer Junction SEGS Plants[C].Proceedings of the Solar 1996,San Antonio,TX,1996.
  • 5Tyner C,Kolb G J,Meinecke W,et al.Concentrating solar power in 1999[R].Paris,1998.
  • 6Price H.Executive summary:assessment of parabofic trough and power tower solar technology cost and perfommce forecasts[R].NREL/SR-550-35060.Sargent & Lundy LLC Consulting Group,Chicago,Illinois,2003.
  • 7Mills D.Advances in solar thermal electricity technology[J].Solar Energy,2004,76(1-3):19-3[J].
  • 8Hank Price.Parabolic trough solar thermal electric power plants[R].DOE/GO-102003-1740,National Renewable Energy Laboratory,Golden,Colorado,2003.
  • 9Kfw Bankengrup.Hochtemperatur solarthermische Stromerzeugung[R].Frankfurt,Germany,2004.
  • 10Gilbert Cohen,Mark Skowronski,Robert Cabk,et al.Solar thermal parabofic trough electric power plants for electric utilities in California[R].Solargenix Energy.Raleigh,NC,the United State of America,2005.

共引文献18

同被引文献27

  • 1邵华平,覃征,游诚曦.SVM算法及其应用研究[J].兰州交通大学学报,2006,25(1):104-106. 被引量:13
  • 2Schaefer J C. Review of photovoltaic power plant per- formance and economics[J]. IEEE Transaction on En- ergy Conversion, 1990(52) : 232-238.
  • 3Qu H, Zhao J, Yu X. Prospect of concentrating solar power in china--the sustainable future[J]. Renew- able and Sustainable Energy Reviews, 2008, 12 ( 9 ) : 2498-2507.
  • 4Yona A, Senjyu T, Saber A Y, et al. Application of neural network to 24- hour-ahead generating power forecasting for PV system[C]//Power and Energy So- ciety General Meeting Conversion and Delivery of E- lectrical Energy in the 21st Century. Pittsburgh~ IEEE Press, 2008 : 1-6.
  • 5Cai T, Duan S X, Chen C S. Forecasting power output for grid-connected photovoltaic power system without using solar radiation measurement [C]//2010 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems. Hefei: IEEE Press, 2010: 773-777.
  • 6Vapnik V N. The nature of statistical learning theory [M]. New York.. Springer, 1999.
  • 7鲍永胜,吴振升.基于SVM的集装箱吞吐量预侧研宝[D].北京:北京交通大学,2011:41-60.
  • 8Klail3 H, KOhne R, Nitsch J, et al. Solar thermal power plants for solar countries-Technology, economics and mar ket potential[J]. Applied Energy, 1995, 52(2): 165 183.
  • 9Manzolini G, Bellarmino M, Macchi E, et al. Solar thermo dynamic plants for cogenerative industrial applications in southernEurope[J]. Renewable Energy, 2011, 36(1): 235- 243.
  • 10Montes M J, Abdnades A, Martinez-Val J M. Per{ormance of a direct steam generation solar thermal power plant for e lectricity production as a function of tile solar multiple[J]. Solar Energy, 2009, 83(5): 679-689.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部