期刊文献+

仿蝇飞行器性能分析及参数优化

Performance analysis and parameters optimization of fly-like aircraft
原文传递
导出
摘要 采用改进的准定常气动力和能耗估算方法,对仿蝇布局微型飞行器的结构参数和运动学参数进行了优化,估算了不同尺度样例飞行器的气动力和能耗.结果表明:①仿蝇气动布局更加适合厘米级、毫米级的飞行器,翼展大于3.75 cm时,其性能相对于同尺度的常规布局飞行器不再有优势.②仿蝇布局飞行器的最优运动学参数为:对称转动模式的转动周期为0.2T^0.25T;扑动加减速周期为0.15T^0.2T;平动迎角取值范围25°~30°.增大扑动幅度可以降低扑动频率,但低扑动频率不能产生足够升力时,要减小扑动幅度,增大扑动频率. With revised quasi-steady aerodynamic estimation and energy exhaustion methods, the fabric and kinematics parameters of fly-like aircraft were optimized. Firstly, the aerodynamic and energy exhaustion of several example fly-like aircrafts was computed with revised quasi-steady aerodynamic. And then, the minimal energy exhaustion of different flight states and longest flight time together with its optimal kinematics parameters was counted with number inserting approach. The result is as follows. 1) Fly-like aerodynamic structure is more preferable to aircraft with size of several centimeters and millimeters, but its capacity is not superior to routine structure when its wingspan is more than 3.75 centimeters. 2) The optimal kinematics parameters of fly-like aircraft are: the rotation is symmetric and its duration of flip is 0.2T-0.25T; acceleration and deceleration duration of stroke is 0.15T-0.2T;mid-stroke angle of attack is 25-30 degrees; the stroke amplitude should be greater when possible, and only when current frequency couldn't render adequate lifting force can the stroke amplitude be advisably reduced for augmenting the frequency.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2010年第1期114-122,共9页 Journal of Aerospace Power
基金 空军工程大学工程学院优秀博士学位论文创新基金(BC08003)
关键词 昆虫飞行 扑翼飞行器 气动力 惯性力 振翅运动参数 insect flight flapping wing air vehicle aerodynamic force inertia force stroke kinematics parameter
  • 相关文献

参考文献13

  • 1Ellington C P. The aerodynamics of hovering insect flight Ⅲ. kinematics[J]. Philosophical Transactions of the Royal Society B,1984,305 (1122):41-78.
  • 2Ellington C P,Berg C V D, Willmott A P,et al. Leading edge vortices in insect flight [J]. Nature, 1996, 384 (6610): 626-630.
  • 3Wu J H,Sun M. Unsteady aerodynamics forces of a flap ping wing[J]. The Journal of Experimental Biology, 2004, 207(8): 1137-1150.
  • 4Cordon J B, Wang Z J. gnerg minimizing kinematics in hovering insect flight[J]. The Journal of Fluid Mechanics, 2007,582 : 153-168.
  • 5Wood R J. Design,fabrication and analysis of a 3D of 3cm flapping wing MAV[C]//Proceeding of IEEE Conference on Ietelligent Robots and System. [S. l.] : [s. n, ], 2007 : 1576-1581.
  • 6Shyy W, Berg M, Ljungqvist D. Flapping and flexible wings for biological and micro air vehicles[J]. Progress in Aerospace Sciences, 1999,35:455-506.
  • 7Sane S P. Induced airflow in flying insect Ⅰ: A theoretical model of the duced flow[J]. The Journal of Experimental Biology, 2006,209 : 32-42.
  • 8Ennos A R. The inertial cause of the wing rotation in diptera[J]. The Journal of Experimental Biology, 1998, 140 (1): 161-169.
  • 9朱自强,王晓璐,吴宗成,陈泽民.小型和微型无人机的气动特点和设计[J].航空学报,2006,27(3):353-364. 被引量:33
  • 10曲东才.微型无人机研制的关键技术及军事应用[J].飞机设计,2007,27(3):46-51. 被引量:15

二级参考文献32

  • 1朱自强,王晓璐,陈泽民,吴宗成.无人驾驶飞行器的气动特点和设计[J].航空学报,2006,27(2):161-174. 被引量:20
  • 2[1]Mohamed G H.Micro-Air-Vehicles:Can they be controlled better?[J].Journal of Aircraft,2001,38(3):419-429.
  • 3[3]Michael A D.Several micro air vehicles in flight test programs[J].Aviation Week and Space Technology,1999,151(2):47-48.
  • 4[4]Lionel D.The problem with aviation cots[J].IEEE Aerospace and Electronic Systems Magazine,2001,16(2):33-37.
  • 5[5]Dan W C.Interfacing aircraft to commercial personal computers[J].IEEE Aerospace and Electronic Systems Magazine,2001,16(5):11-15.
  • 6[6]Michael A D.Turbojet on a chip to run in 2000[J].Aviation Week and Space Technology,1999,151(2):50-52.
  • 7[7]Kirk L,Robert S,Brent M,et al.Micro-power amtec systems[J].IEEE Aerospace and Electronic Systems Magazine,2001,16(3):47-51.
  • 8[8]Woods M I,Henderson J F,Lock C D.Energy requirements for the flight of micro air vehicles[J].The Aeronautical Journal,2001,105(1045):135-149.
  • 9Grasmeyer J M,Keennon M T.Development of the black widow micro air vehicle[R].AIAA 2001-0127,2001.
  • 10Keennon M T,Grasmeyer J M.Development of the black widow and microbat MAVs and a vision of the future of MAV design[R].AIAA 2003-2901,2003.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部