期刊文献+

基于不同PTF_S的流域尺度土壤持水特性空间变异性分析 被引量:7

SPATIAL VARIABILITY ANALYSIS OF SOIL WATER RETENTION CAPABILITY AT BASIN SCALE BASED ON DIFFERENT PTF_S
下载PDF
导出
摘要 利用点估计模型、线性回归模型、非线性回归模型和人工神经网络模型等四种PTFS分别预测大沽河流域90个土壤样本的田间持水量(θ-30 kPa)和凋萎含水量(θ-1 500 kPa),借助传统统计学和地统计学方法对其空间变异性进行了比较分析。传统统计学分析认为非线性回归模型预测的效果最好,无论是实测值还是估计值,所有土壤样本θ-30 kPa的变异系数总是小于θ-1 500 kPa,两者均属于中等变异性;地统计学分析表明实测值和预测值的θ-30 kPa和θ-1 500 kPa均存在不同程度的块金效应,且θ-30 kPa总是表现出较θ-1 500 kPa更强烈的空间相关性,通过分析θ-30 kPa和θ-1 500 kPa的半方差函数模型参数,发现人工神经网络模型最能真实地反映试验区土壤持水特性的空间变异性特征。 Field water retention capacities (θ-30kpa) and wilting coefficients ( θ-1500kpa) of ninety soil samples in the Dagu River Basin were predicted separately with four PTFs, i.e. point regression method, linear regression method, non- linear regression method and artificial neural network method, and their spatial variabilities were analyzed with the aid of traditional statistic and geostatistie methods. The traditional statistics revealed that the nonlinear regression method was the best with the variation coefficients of θ-30kpa of all the soil samples, being always less than θ-1500kpa, however, no matter measured or predicted values, both belonged to the category of moderate in spatial variability. The geostatistics also showed that both measured and predicted θ-30kpa and θ-1500kpa demonstrated varied nugget effects, moreover, θ-30kpa always had stronger spatial dependence than θ-1500kpa did. Analysis of the parameters of semi-variance model forθ-30kpa and θ-1500kpa ultimately revealed that the artificial neural network model could most truthfully characterize spatial variability of the soil water retention capability in the experimental zone.
出处 《土壤学报》 CAS CSCD 北大核心 2010年第1期33-41,共9页 Acta Pedologica Sinica
基金 国家自然科学基金项目(40771095) 青岛市水利科技项目(2006-003)共同资助
关键词 PTFS 大沽河流域 土壤 持水特性 空间变异性 PTFs the Dagu Rriver Basin Soil Water retention capability Spatial variability
  • 相关文献

参考文献20

  • 1陈效民,Bouma,J.应用一次出流法结合SFIT模型对土壤水力性质的研究[J].土壤学报,1994,31(2):214-219. 被引量:37
  • 2朱安宁,张佳宝,陈效民,陈德立,陈德立.封丘地区土壤传递函数的研究[J].土壤学报,2003,40(1):53-58. 被引量:29
  • 3黄元仿,李韵珠.土壤水力性质的估算——土壤转换函数[J].土壤学报,2002,39(4):517-523. 被引量:42
  • 4Kern J S. Evaluation of soil water retention models based on basic soil physical properties. Soil Science Society of America Journal, 1995, 59:1 134--1 141.
  • 5Gupta S C, Larson W E. Estimating soil water retention characteristics from particle size distribution, organic matter percent and bulk density. Water Resources Research, 1979, 15:1 633-- 1 635.
  • 6Pachepsky Y A, Timlin D, Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal, 1996, 60:727--733.
  • 7Vereecken H, Maes J, Feyen J, et al. Estimating the soil water moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 1989, 148:389--403.
  • 8Schaap M G, Bouten W. Modeting water retention curves of sandy soils using neural networks. Water Resources Research, 1996, 32:3 033--3 040.
  • 9Wosten J H M, Pachepsky Y A, Rawls W J. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 2001, 251 : 123--150.
  • 10毛萌,任理.农田尺度降雨入渗—重分布条件下阿特拉津在非饱和土壤中淋溶风险的评价[J].土壤学报,2005,42(2):177-186. 被引量:8

二级参考文献24

  • 1Jin Ren,Ke Jiang.Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China[J].Chinese Science Bulletin,2002,47(19):1612-1615. 被引量:7
  • 2杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899. 被引量:799
  • 3郭焱 李保国.预测土壤水分运动参数的PTFs.节水农业应用基础研究进展[M].北京:中国农业出版社,1995.56-63.
  • 4卢振民 中国科学院北京农业生态系统试验站.土壤水分特征曲线和非饱和导水率的数学模型.农田作物环境实验研究[M].北京:气象出版社,1990.268-277.
  • 5Wosten J H M, van Genuchten M Th. Using texture and other soil properties to predict the unsaturated soil hydraulic functions[J]. Soil Sci. Soc. Am. J., 1988, 52:1762-1770.
  • 6Rawls W J, Gish T J, Brakensiek D L. Estimating soil water retention from soil physical properties and characteristics[J]. Adv. Soil Sci., 1991,16: 213-234.
  • 7Tietje O, Tapkenhinrichs M. Evaluation of pedo-transfer functions[J]. Soil Sci. Soc. Am. J., 1993, 57:1088-1095.
  • 8Timlin D J, Ahuja L R, Pachepsky Ya, et al. Use of Brooks-Corey parameters to improve estimates of saturated conductivity from effective porosity. Soil Sci. Soc. Am. J., 1999, 63:1086-1092.
  • 9Pachepsky Y A, Timlin D, Varallyay G. Artificial neural networks to estimate soil water retention from easily measurable data[J]. Soil Sci. Soc. Am. J., 1996, 60:727-733.
  • 10Schaap M G, Bouten W. Modeling water retention curves of sandy soils using neural networks[J]. Water Resour. Res., 1996, 32:3033-3040.

共引文献113

同被引文献91

  • 1苏里坦,宋郁东,张展羽.天山北麓地下水与自然植被的空间变异及其分形特征[J].山地学报,2005,23(1):14-20. 被引量:18
  • 2符素华.土壤中砾石存在对入渗影响研究进展[J].水土保持学报,2005,19(1):171-175. 被引量:61
  • 3陈晓燕,陆桂华,秦福兴,储开凤.土壤传递函数法在确定田间持水量中的应用[J].河海大学学报(自然科学版),2005,33(2):170-172. 被引量:7
  • 4王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报,2005,42(4):545-550. 被引量:219
  • 5杨国祥,史学正,于东升,王洪杰,孙维侠,赵永存,金洋.基于WebGIS的中国土壤参比查询系统研究[J].土壤学报,2007,44(1):1-6. 被引量:7
  • 6Nemes A, Roberts R T, RaMs W J, et al. Software to estimate - 33 and - 1 500 kPa soil water retention using the non-parametric k-Nearest Neighbor technique[ J]. Environmental Modelling & Software, 2008, 23 (2) :254 -255.
  • 7Stumpp C, Engelhardt S, Hofmann M, et al. Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps[ J]. European Journal of Forest Research, 2009, 128 (6) :609 -620.
  • 8Prasad V K, Anuradha E, Badarinath K V S. Climatic controls of vegetation vigor in four contrasting forest types of India- evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000) [ J ]. International Journal of Biometeorology, 2005, 50 ( 1 ) :6 - 16.
  • 9Chirico G B, Medina H, Romano N. Functional evaluation of PTF prediction uncertainty: an application at hillslope scale[ J ] Geoderma, 2010, 155(3 -4) :193 -202.
  • 10Chirico G B, Medina H, Romano N. Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods [ J ]. Journal of Hydrology, 2007, 334 ( 3 - 4 ) :405 - 422.

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部