期刊文献+

基于Montgomery曲线改进ECDSA算法的研究 被引量:14

The research of the promotion for ECDSA algorithm based on Montgomery-form ECC
下载PDF
导出
摘要 提出了一种基于Montgomery曲线改进ECDSA算法,并重点改进异步点乘问题。改进的ECDSA具有更快的计算速度并能有效地抵御时间攻击和能量攻击,将验证签名与产生签名时间之比从2倍降低到约1.2倍,减少约40%,算法对提高椭圆曲线密码的实现效率有一定意义。 Montgomery-form ECC was applied to promote ECDSA algorithm, emphases on asynchronous scalar multiplication problem, could effectively resist the timing attack and energy attack. The computation amount of the new Montgomery-form ECDSA algorithm decreases 40%, and the proportion of verifying signature algorithm to generating signature algorithm debase 1.2 times. The new Montgomery-form ECDSA algorithm will make great improvement to the implementation of ECC.
出处 《通信学报》 EI CSCD 北大核心 2010年第1期9-13,共5页 Journal on Communications
基金 国家自然科学基金资助项目(60970006 60903187) 上海市重点学科和科委重点实验室基金资助项目(S30108 08DZ2231100)~~
关键词 蒙哥马利 椭圆曲线密码 椭圆曲线数字签名算法 时间攻击 能量攻击 Montgomery ECC ECDSA timing attack energy attack
  • 相关文献

参考文献16

  • 1KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Compution American Mathematical Society, 1987(48): 203-309.
  • 2MILLER V. Use of elliptic curves in cryptography[A]. Advance in Cryptology-Proceedings of CRYPTO 1985, Lecture Notes in Computer Science[C]. Springer, 1986. 417-426.
  • 3MONTGOMERY P L. Speeding the pollard and elliptic curve methods of factorizations[J]. Math. Comp, 1987, 48: 243-264.
  • 4MONTGOMERY P L. Modular multiplication without trial division[J]. Mathematics of Computation, 1985, 44(170): 519-521.
  • 5LOPEZ J, DAHAB R. Fast Multiplication on elliptic curves over GF(2^m) without precomputation[A]. Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems[C]. London, UK: Springer Verlag, 1999.316-327.
  • 6OKEYA K, SAKURAI K. Use of Montgomery trick in precomputation of multi-scalar multiplication in elliptic curve cryptosystems[J]. IFACE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003,86(1): 98-112.
  • 7白国强,黄谆,陈弘毅.椭圆曲线数字签名算法中的快速验证算法[J].清华大学学报(自然科学版),2003,43(4):564-568. 被引量:11
  • 8IZU T. Elliptic curve exponentiation for cryptosystem[A]. SCIS'99[C]. 1999.275-280.
  • 9OKEYA K, SAKURAI K. A scalar multiplication algorithm with recovery of y-coordinate on the Montgomery form and analysis of efficiency for elliptic curve cryptosystem[J]. IEICE Trans Fundamental, 2002, 85(1): 84-93.
  • 10OKEYA K, KURUMATANI H, SAKURA K. Elliptic curves with the montgomery-form and their cryptographic applications[A]. Public Key Cryptography (PKC2000), LNCS1715[C]. 2000. 238-257.

二级参考文献17

  • 1SOLINAS J. Efficient arithmetic on Koblitz curves[J]. Designs, Codes and Cryptography, 2000,19(3): 195-249.
  • 2HANKERSON D, MENEZES A, VANSTONE S. Guide to Elliptic Curve Cryptography[M]. New York: Springer-Verlag, 2003.
  • 3BLAKE I F, MURTY V K, XU G. Nonadjacent radix- t expansions of integers in euclidean imaginary quadratic number fields[EB/OL]. http://www.utoronto.ca/-w3ganita/radix_t.pdf,2008.
  • 4OKEYA K, SAMOA K S, SPAHN C, et al. Signed binary representations revisited[A]. CRYPTO 2004[C]. 2004.23-139.
  • 5AVANZI R DIM/TROV V, DOCILE C et al. Extending scalar multi- plication using double bases[A]. Advances in C53,ptology-ASIACRYPT06 (LNCS 4284)[C].2006. 130-144.
  • 6MONTGOMERY P. Speeding the pollard and elliptic curve methods of factorization[J]. Mathematics of Computation, 1987, 243-263.
  • 7ELMEGAARD-FESSEL L. Efficient scalar multiplication and security against power analysis in cryptosystems based on the NIST elliptic carwes over prime fields[EB/OL], http://eprint. iacr.org/ 2006/313. 2008.
  • 8LOPEZ J, DAHAB R. Fast multiplication on elliptic curves over GF(2n) without precomputation[A]. Cryptographic Hardware and Embedded Systems-CHES'99(LNCS 1717)[C]. 1999.316-27.
  • 9OKEYA K, SAKURAI K. Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-form elliptic curve[A]. Cryptographic Hardware and Embedded Systems-CHES2001 (LNCS2162)[261][C]. 2001. 126-141.
  • 10SMART N R WESTWOOD E J, Point multiplication on ordinary elliptic curves over fields of characteristic three[A]. AAECC 13[C]. 2003.485-497..

共引文献14

同被引文献95

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部