期刊文献+

一种快速局部特征描述算法 被引量:17

A Fast Local Feature Description Algorithm
下载PDF
导出
摘要 利用局部邻域像素强度分布性质提出了一种快速局部特征描述算法—规范化强度对比描述子(Normalized intensity contrast descriptor,NICD).首先规格化兴趣点邻域的像素强度,再根据邻域中像素强弱分布建立描述子.分别利用Fast-Hessian,DoG以及Harris-Laplacian检测子搭配NICD进行图像匹配以及物体识别实验.结果表明:在多种图像变换中,NICD可以实现与当前先进的SIFT和SURF算子相当的匹配效果,而匹配时间大幅缩短,因而更适合在实时应用中使用. A fast local feature description algorithm is proposed in this paper based on the intensity distribution property of local neighbor, called normalized intensity contrast descriptor (NICD). After normalizing pixel intensity of local neighbor areas surrounding interest points, the descriptors could be computed based on the intensity distribution property of local neighbor. For evaluating the performance of NICD, we adopt three detectors: fast-Hessian, DoG, and Harris-Laplacian, with NICD respectively in image matching and object recognition test. The results of evaluations show that this new descriptor is competitive with the performance of SIFT descriptor and SURF descriptor in geometric and photometric deformations. However, the matching time is greatly shortened when using NICD. Therefore, NICD is more suitable in real-time applications.
出处 《自动化学报》 EI CSCD 北大核心 2010年第1期40-45,共6页 Acta Automatica Sinica
基金 高等学校博士学科点专项科研基金(20050183032)资助~~
关键词 局部特征 图像匹配 尺度空间 物体识别 Local feature, image matching, scale-space, object recognition
  • 相关文献

参考文献18

  • 1Lee L, Ko H. Gradient-based local affine invariant feature extraction for mobile robot localization in indoor environments. Pattern Recognition Letters, 2008, 29(14): 1934-1940.
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 506-513.
  • 4Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IiEEE Transactions on Pattern Analysis and Machine Intelligence, 20057 27(10): 1615-1630.
  • 5Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509--522.
  • 6Vetterli M, Kovacevic J. Wavelets and Subband Coding. New Jersey: Prentice Hall, 1995. 352--342.
  • 7Florack L M J, ter Haar R B M, Koenderink J J, Viergever M A. General intensity transformations and second order invariants. In: Proceedings of the 7th Scandinavian Conference on Image Analysis. Aalborg, Denmark: Springer, 1991. 338-345.
  • 8Freeman W T, Adelson E H. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891--906.
  • 9Schmid C, Mohr R. Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(5): 530-535.
  • 10Leung T, Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision, 2001, 43(1): 29-44.

同被引文献177

  • 1费旭东,荆仁杰.基于知识的快速角点提取[J].计算机学报,1994,17(1):30-36. 被引量:6
  • 2薛智刚,李巴津.基于Haar小波的图像变换方法的研究[J].微计算机信息,2006,22(10X):275-277. 被引量:1
  • 3丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 4Qiao Y J, Xie X F, Shi L, et al. The application of spatial scene matching based on SURF in cruise missile terminal guidance[C]// Proc. of the IEEE International Conference on Measuring Technol- ogy and Mechatronics Automation,2010 : 790 - 793.
  • 5Jing L, Nigel M. A comprehensive review of current local fea- tures for computer vision[J]. Neurocomputing Archive,2008, 71(10/12):1771- 1787.
  • 6Lowe D G. Distinctive image features from scale-invarianl key- points[J], International Journal of Computer Vision, 2004, 2(60) :91 -110.
  • 7Morel J M, Yu G. ASIFT: a new framework for fully affine invariant image comparison[J]. Slam Journal on Imaging Sci- ences,2009,2(2):438- 469.
  • 8Bay H, Tuvtellars T, Gool L V. SURF: speeded up robust fea- tures[C]// Proc. of the 9th European Conference on Computer Vision ,2006,3951(1) :404 - 417.
  • 9Tolak E, Lepetit V, Fua P. A fast local descriptor for dense matching[C]// Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1 - 8.
  • 10Zhao G Q, Chen L, Chen G C. A speeded- up local descriptor for dense stereo matching[C]//Proc, of the 16th IEEE Interna- tional Conference on Image Processintg, 2009 : 2101 - 2104.

引证文献17

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部