期刊文献+

带时间窗的中转联盟运输调度问题的混合算法研究 被引量:5

Research of Hybrid Algorithm on Allied Vehicle Routing Problem with Transfer Stations and Time Windows
下载PDF
导出
摘要 介绍中转联盟运输调度问题的优越性和重要研究意义,建立了带中转点的优化运输调度问题的数学模型,并构造了求解该模型的优化算法,算法针对城市货物运输的特点,首先结合sweep算法和saving算法确定需求点与中转点之间的分派,随后采用改进的蚁群算法对每个中转点的运输路线进行优化。实例计算表明,提出的模型和算法能够有效的求解中转联盟运输调度问题。 The advantages and research significance of the vehicle routing problem with transfer stations and time windows is analyzed,an optimized mathematical model to solve the problem is established,and the effective ant colony algorithm for the model is constructed.Considering the characteristics of urban freight transportation,the thesis combines sweep algorithm and saving algorithm to decide the allocation between the demand points and transfer stations,then adopts the improved ant colony algorithm to optimize the vehicle routing.
作者 陈金 蔡延光
出处 《工业控制计算机》 2010年第1期70-72,共3页 Industrial Control Computer
基金 广东省自然科学基金团队项目(8351009001000002) 国家自然科学基金项目(60374062) 广东省科技计划项目(2007B010200070)
关键词 联盟运输调度问题 中转点 蚁群算法 sweep算法 saving算法 allied vehicle routing problem,transfer station,ant colony algorithm,sweep algorithm,saving algorithm
  • 相关文献

参考文献5

二级参考文献60

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:162
  • 2李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 3TAN K,LEE T,OU K,et al.A messy genetic algorithm for the vehicle routing problem with time window constraints[A].Proceedings of IEEE Congress on Evolutionary Computation[C].Piscatway,N.J.,USA:IEEE Computational Intelligence Society,2001.679-686.
  • 4HWANG H.An improved model for vehicle routing problem with time constraint based on genetic algorithm[J].Computers & Industrial Engineering,2002,42(2-4):361-369.
  • 5COLORNI A,DORIGO M,MANIEZZO V.Distributed optimization by ant colonies[A].Proceedings of the 1st European Conference on Artificial Life[C].Paris,France:Elsevier Publiching,1991.134-142.
  • 6DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 7BREIMAN L.Bagging predictors[J].Machine Learning,1996,9(24):123-140.
  • 8Murao H,Tohmata K,Konishi M,et al.Pheromone based transportation scheduling system for the multi-vehicle routing problem[C]//Proc IEEE Int Conf Syst Man Cybem.Tokyo:[s.n.],1999:430-434
  • 9Kennedy J,Eberhart R.Particle Swarm Optimization[C]//Proc.IEEE Int.Conf.on Neural Networks.Perth,WA,Australia:[s.n.],1995:1942-1948.
  • 10Fukuyama Y.Fundamentals of particle swarm techniques[C]//Lee K Y,El-Sharkawi M A.Modem Heuristic Optimization Techniques With Applications to Power Systems.[s.l.]:IEEE Power Engineering Society,2002:45-51.

共引文献71

同被引文献71

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部