摘要
Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.
Let A be a standard operator algebra on a Banach space of dimension 〉 1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A → B and M^* : B → A are surjective maps such that {M(r(aM^*(x)+M^*(x)a))=r(M(a)x+xM(a)), M^*(r(M(a)x+xM(a)))=r(aM^*(x)+M^*(x)a) for all a ∈ A, x ∈ B, where r is a fixed nonzero rational number. Then both M and M^* are additive.
基金
Supported by the National Natural Science Foundation of China (Grant Nos.10675086
10971117)
the Natural Science Foundation of Shandong Province (Grant No.Y2006A03)