期刊文献+

采用自适应平滑约束的立体匹配方法 被引量:3

Stereo Matching by Using Adaptive Smoothness Term
下载PDF
导出
摘要 平滑约束是消除对应点匹配歧义性的最常用的约束之一,如何有效地保持视差图的非连续区域是使用该约束时所需考虑的重要问题.为此提出了一种采用自适应平滑约束的立体匹配方法,使得平滑项的大小随图像局部二维结构的不同而相应变化.首先获取一系列真实场景的彩色图像和对应深度图来构建实例库;然后对其进行分析统计,得到给定局部二维结构时对应于几何连续表面的条件概率;最后根据该条件概率由当前输入图像局部的具体内容来确定自适应的平滑项权值.通过将其添加到经典的基于图割的立体匹配方法中,证明了该平滑项定义方式的有效性. Smoothness constraint is essential in addressing the ambiguity problem of stereo matching.An important issue involved in using this constraint is how to preserve discontinuity.In this paper,an adaptive smoothness term is introduced into stereo matching,where the smoothness penalty is changed according to local 2D structures.Firstly,we create a dataset composed of pairs of real color image and its corresponding depth map.Then,the conditional probability of continuity given the 2D structures is obtained through statistical analysis.Taking advantage of the conditional probability,we can calculate weight for smoothness penalty adaptive to local image content.Experimental results,implemented by applying this smoothness term into a classical graph cuts based stereo matching algorithm,demonstrate the effectiveness of our approach.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第1期108-113,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"九七三"重点基础研究发展计划项目(2004CB318000) 国家"八六三"高技术研究发展计划(2007AA01Z336) 教育部科学技术研究重大项目(103001)
关键词 立体匹配 平滑约束 本征维数 stereo matching smoothness constraint intrinsic dimensionality
  • 相关文献

参考文献14

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms[J]. International Journalof Computer Vision, 2002, 47(1/2/3) 7-42.
  • 2Brown M Z, Burschka D, Hager G D. Advances in computational stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008.
  • 3Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (11) :1222-1239.
  • 4Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.
  • 5Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts [C] //Proceedings of International Conference on Computer Vision, Vancouver, 2001: 508- 515.
  • 6Hong L, Chen G G. Segment based stereo matching using graph cuts [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, 2004:74-81.
  • 7尹传历,刘冬梅,宋建中.改进的基于图像分割的立体匹配算法[J].计算机辅助设计与图形学学报,2008,20(6):808-812. 被引量:20
  • 8Bleyer M, Gelautz M. Graph based surface reconstruction from stereo pairs using image segmentation [C]//Proceedings of SPIE, San Jose, 2005, 5665:288-299.
  • 9Felsberg M. Low level image processing with the structure multivector [D]. Kiel: University of Kiel, 2002.
  • 10Felsberg M, Kruger N. A probabilistic definition of intrinsic dimensionality for images [C] //Proceedings of the 25th DAGM Symposium, Magdeburg, 2003, 2781:140-147.

二级参考文献10

  • 1刘正东,杨静宇.自适应窗口的时间规整立体匹配算法[J].计算机辅助设计与图形学学报,2005,17(2):291-294. 被引量:12
  • 2夏永泉,刘正东,杨静宇.不变矩方法在区域匹配中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2152-2156. 被引量:21
  • 3Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002,47(1/2/3) : 7 -42
  • 4Forstmann S, Kanou Y, Ohya J, et al. Real-time stereo by using dynamic programming [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, D C, 2004, 3:29-37
  • 5Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts[C]//Proceedings of International Conference on Computer Vision, Vancouver, 2001, 2:508-515
  • 6Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137
  • 7Bleyer M, Gelautz M. A layered stereo algorithm using image segmentation and global visibility constraints[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 128-150
  • 8Bleyer M, Gelautz M. Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions [J]. Signal Processing & Image Communication, 2007, 22(2): 127-143
  • 9Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619
  • 10张爱武,李明哲,胡少兴.一种用于三维曲面视觉测量的立体精匹配方法[J].光学技术,2001,27(2):115-117. 被引量:7

共引文献19

同被引文献41

  • 1唐丽,吴成柯,刘侍刚,颜尧平.基于区域增长的立体像对稠密匹配算法[J].计算机学报,2004,27(7):936-943. 被引量:27
  • 2周秀芝,文贡坚,王润生.自适应窗口快速立体匹配[J].计算机学报,2006,29(3):473-479. 被引量:32
  • 3BRUCE V, GREEN P R, GEORGESON M A. Visual perception: Physiology, psychology and ecology[ M]. East Sussex: Psychology Press, 2003.
  • 4SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[ J]. International Journal of Computer Vision, 2002, 47(1/3) : 7 -42.
  • 5SEITZ S M, CURLESS B, DIEBEL J, et al. A comparison and evaluation of muhi-view stereo reconstruction algorithms[ C] // Proceedings of Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006:519-528.
  • 6HOIEM D, EFROS A A, HEBERT M. Recovering surface layout from an image[ J]. International Journal of Computer Vision, 2007, 75(1): 151-172.
  • 7HOIEM D, STEIN A N, EFROS A A, et al. Recovering occlusion boundaries from a single image[ C] // Proceedings of International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2007:1-8.
  • 8SAXENA A, CHUNG S H, NG A Y. 3-D depth reconstruction from a single still image[ J]. lnteroatiortal Journal of Computer Vision, 2007, 76(1): 53-69.
  • 9KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts[ C] // Proceedings of International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2001:508-515.
  • 10SUN J, ZHENG N N, SHUM H Y. Stereo matching using belief propagation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部