期刊文献+

基于聚类分析的综合神经网络集成算法 被引量:5

An Integrated Neural Network Ensemble Algorithm Based on Clustering Technology
下载PDF
导出
摘要 研究神经网络集成是一种有效实用的分类方法,权值是影响神经网络集成性能的重要因素。为了克服神经网络集成固定权值的缺陷,提出一种基于聚类分析的综合神经网络集成算法。算法首先将样本分类,每类样本中加入其他样本类一定数量的中心样本,不同的神经网络学习不同类的样本。根据输入数据与样本类别之间的相关程度自适应调整集成权值。算法不仅用于自适应调整集成权值,而且是一种产生个体神经网络的训练方法。四个数据集上的仿真试验证实了算法的有效性。 Different component neural networks(NNs) in an ensemble in which different training sets have different performance for the same input data.The weights of an ensemble impact greatly on the performance of ensemble.The fixed weights may weaken the performance of some component NNs which can have better performance and lower weights,An Integrated neural network ensemble(InNNE) is proposed in the paper,which is an integrated ensemble algorithm not only for dynamically adjusting weights of an ensemble,but also for generating component NNs based on clustering technology.InNNE classifies the training set into different training subsets with clustering technology,which are used to train different component NNs.The weights of an ensemble are adjusted by the correlation of input data and the center of different training subsets.InNNE can increase the diversity of component NNs and decrease generalization error of ensemble.The paper provides both the analytical and experimental evidence to support the novel algorithm.
出处 《计算机仿真》 CSCD 北大核心 2010年第1期166-169,192,共5页 Computer Simulation
关键词 神经网络集成 聚类分析 泛化性能 Neural network ensemble Clustering analysis Generalization performance
  • 相关文献

参考文献13

  • 1Zhi - hua Zhou, Jianxin Wu, Wei Tang. Ensembling Neural Networks: Many Could Be Better Than All[ J]. Artificial Intelligence. 2002,137(2) : 239 -263.
  • 2李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598. 被引量:24
  • 3李国正,杨杰,孔安生,陈念贻.基于聚类算法的选择性神经网络集成[J].复旦学报(自然科学版),2004,43(5):689-691. 被引量:15
  • 4Md. Monirul Islam, Xin Yao and Kazuyuki Murase. A Constructive Algorithm for Training Cooperative Neural Network Ensembles [ J ]. IEEE Transactions On Neural Networks, 2003,14 (4) : 820 - 834.
  • 5Zheng - Qun Wang, Shi - Fu Chen, Zhao - Qian Chen and Jun - Yuan Xie. A Parallel Learning Approach for Neural Network Ensemble[ J]. Artificial Intelligence. 2004. 1200 - 1205.
  • 6Pitoyo Hartono and Shuji Hashimoto. Adaptive Neural Netwrok En- semble That Learns From Imperfect Supervisor[ C ]. Proceedings of the 9th International Conference on Neural Information Processing (ICONIP02). 2002, 5 : 2561 -2565.
  • 7Xin Yao. Manfred Fischert and Gavin Brown Neural Network Ensembles and Their Application to Traffic Flow Prediction in Telecommunications Networks[J]. IEEE Trans. Evol. Comp., 2001, 4: 693- 698.
  • 8Yong Liu and Xin Yao. Towards Designing Neural Network Ensembles by Evolution[ J]. Artificial Intelligence. 1998. 623 - 632.
  • 9蒋盛益,李庆华.聚类分析中的差异性度量方法研究[J].计算机工程与应用,2005,41(11):146-149. 被引量:4
  • 10李翠霞,于剑.一种模糊聚类算法归类的研究[J].北京交通大学学报,2005,29(2):17-21. 被引量:12

二级参考文献66

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2易汉文.城市交通分区类别的出行生成模型[J].武汉城市建设学院学报,1996,13(1):14-20. 被引量:9
  • 3边肇祺.模式识别[M].清华大学出版社,1999..
  • 4Solice P., Krogh A.. Learning with ensembles: How over-Fiting can be useful. In: Touretzky D., Mozer M., Hasselmo M. eds.. Advances in Neural Information Processing Systems, 1995, 7: 231~238.
  • 5Schapire R.E.. The strength of weak learnability. Machine Learning, 1990, 5(2): 197~227.
  • 6Friedman L.. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 7Jang M., Cho S.. Observational learning algorithm for an ensemble of neural networks. Pattern Analysis & Applications, 2002, 5: 154~167.
  • 8Zhou Z.-H., Wu J.-X., Tang W.. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1~2): 239~263.
  • 9Zhou Z.-H., Wu J.-X., Tang W., Chen Z.-Q.. Combining regression estimator: GA-based selective neural network Ensemble. International Journal of Computational Intelligence and Applications, 2001, 1(4): 341~356.
  • 10Perrone M.P., Cooper L.N.. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. eds.. Artificial Neural Networks for Speed and Vision, New York: Chapman & Hall, 1993, 126~142.

共引文献327

同被引文献30

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部