期刊文献+

求解不可导算子的迭代法及其收敛性分析

Iteration for solving non-differentiable operator and the analysis for its convergence
下载PDF
导出
摘要 主要研究了非线性算子不可导情形下Newton迭代型的收敛性.通过将不可导算子F分解为可导部分H和不可导部分G,借助Hernndez采用的修正迭代公式,分析了Newton型迭代的收敛性.相比Hernández的结果,本定理所需条件较弱,并且具有较好的误差估计公式. Convergence of Newton-like iteration for the non-differentiable operator is considered. Dividing the non- differentiable operator F into two parts: the differentiable part H and the non-differentiable part G, making use of the modified iteration formula used by Hernandez, the convergence of the iteration is analyzed. Compared with the result of Hernandez's, the theorem needs milder condition and draw the better conclusion for error estimate.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2010年第1期38-41,共4页 Journal of Zhejiang University(Science Edition)
关键词 NEWTON迭代 BANACH空间 不可导算子 Newton-iteration Banach space non-differentiable operators
  • 相关文献

参考文献12

  • 1KANTOROVICH L V, AKILOV G P. Functional Analysis[M]. New York: Pregamom, 1982.
  • 2SMALE S. Newton's method estimates from data at one point, the merging of disciplines: New Directions in Pure[C]//Applied and Computational Mathematics. New York: Springer -Varlag, 1986 : 185- 196.
  • 3王兴华,韩丹夫,孙方裕.若干变形Newton迭代的点估计[J].计算数学,1990,12(2):145-156. 被引量:22
  • 4WANG X H. Convergence of Newton's method and inverse function theorem in Banach space [J]. Appl Math Comp, 1991,68:169-186.
  • 5ARGYROS I K. On the solution of equations with nondifferentiable and Ptak error estimates [J]. BIT, 1990,30..752-754.
  • 6ARGYROS I K. An improved convergence analysis and applications for Newton-like methods in Banach space [J]. Numer Funet Anal Optim, 2003,24 : 653- 672.
  • 7HAND F. The maiorant method and convergence for solving nondifferentiable equation in Banach space[J]. Appl Math Comp, 2001,118 : 73-82.
  • 8HERNANDZ M A, RUBJO M J. The secant method for nondifferentiable operators[J]. Appi Math Lett, 2002,15:395-399.
  • 9HERNANDEZ M A, RUBIO M J. A uniparametric family of iterative processes for sloving nondifferentiable equations[J]. J Math Anal Appl, 2002,275:821-834.
  • 10HERNANDEZ M A, RUBIO M J. A modification of Newton's method for nondifferentiable equations[J]. J Comp Appl Math, 2004,165:409-417.

二级参考文献12

  • 1匿名著者,泛函分析,1982年
  • 2王兴华,中国科学.A,1989年,9期,905页
  • 3奥特加JM 莱因博尔特WC 朱季纳 译.多元非线性方程组迭代解法[M].科学出版社,1983..
  • 4冯果枕.非线性方程组迭代解法[M].上海:上海科学技术出版社,1989..
  • 5HAN Dan-fu,WANG Xing-hua. The error estimate of Hally's method[J]. Numerical Mathematics, 1997,6(1) :231-240.
  • 6CHEN Dong, ARGYROS I K, QIAN Qing-shan. A note on the Hally method in banach spaces[J]. Applied Mathematics and Computation, 1993, 58 ( 2, 3 ): 215-224.
  • 7郑士明.Halley方法的收敛性及其最佳误差估计[J].杭州大学学报:自然科学版,1982,9(3):285-289.
  • 8王兴华,韩丹夫.Newton迭代的区域估计与点估计[J].计算数学,1990,12(1):47-53. 被引量:9
  • 9王兴华,韩丹夫,孙方裕.若干变形Newton迭代的点估计[J].计算数学,1990,12(2):145-156. 被引量:22
  • 10WANG XinghuaDepartment of Mathematics, Hangzhou University, Hangzhou 310028, China.Convergence on the iteration of Halley family in weak conditions[J].Chinese Science Bulletin,1997,42(7):552-555. 被引量:19

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部