期刊文献+

基于小波域隐马尔可夫树模型的医学图像去噪 被引量:1

Medical Image Denoising Based on Wavelet-Domain Hidden Markov Tree
下载PDF
导出
摘要 目的:为了更好地去除DR医学图像噪声。方法:通过分析其噪声来源,在小波去噪和小波域隐马尔可夫模型的基础上,进行改进,即引入了方差不变性变换来调整原始图像的噪声模型为高斯噪声模型;图像分解为不同频率的不同子带,而隐马尔可夫树模型则用来规划小波系数的边缘分布。结果:自然图像处理实验结果表明,与普通的小波去噪方法相比,该方法不但可以保留图像的边缘信息,而且能提高去噪后图像的峰值信噪比。结论:同时用该方法处理DR图像,处理结果表明此方法在噪声去除、细节质量及骨骼锐化等方面比传统的高斯滤波及小波阈值滤波等方法效果要好。 Objective To denoise digital radiographic images well. Methods A technique was presented that used the Anscombe's transformation to adjust the original image to a Gaussian noise model based upon the wavelet denoising method and the wavelet-domain Hidden Markov Tree (HMT) model. Wavelet domain HMT models were used to determine the dependencies of multiscale wavelet coefficients through the state probabilities of the wavelet coefficients, whose sedistribution densities could be approximated by Gaussian mixture model. Results The proposed method could keep natural images edges from damaging and increase PSNR. Conclusion Quantitative and qualitative DR images assessment shows that the proposed algorithm outperforms the traditional Gaussian filter in terms of noise reduction, quality of details and bone sharpness.
出处 《医疗卫生装备》 CAS 2010年第1期34-36,共3页 Chinese Medical Equipment Journal
关键词 小波变换 小波域隐马尔可夫树模型 方差不变性变换 图像去噪 高斯噪声 wavelet transform wavelet-domain hidden markov tree model Anscombe's transformation image denoising gauss noise
  • 相关文献

参考文献7

  • 1赵磊.X线摄影数字化CR与DR[J].医疗装备,2006,19(12):9-11. 被引量:9
  • 2迟东璇,纪景娜,温学兵.一种基于人眼视觉和中值滤波的图像去噪增强算法[J].渤海大学学报(自然科学版),2006,27(4):316-318. 被引量:2
  • 3Donoho D L,Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81 : 425-455.
  • 4Liu Juan, Moulin P. Information-theoretic analysis of interseale and intrascale dependencies betweeen image wavelet coefficients [J]. IEEE Trans Iamge Processing,2001,10( 1 ) : 1 647-1 658.
  • 5Matthew S Crouse,Robert D Nowak,Riehard G Baraniuk. Waveletbased statistical signal processing using hidden markov models[J]. IEEE transactions on signal processing, 1998,46(4) :886-902.
  • 6Romberg J K,Choi H,Baraniuk R G. Bayesian tree-strueured image modeling using wavelet-domain hidden Markov models [J]. IEEE Trans Image Prcessing,2001,10(7) :1 056-1 068.
  • 7Starck J,Murtagh F,Bijaoui A. Image Processing and Data Analysis: the muhiscale approach[M]. Cambridge:Cambridge University Press, 1998.

二级参考文献10

  • 1[1]Agaian S S,Panetta K,Grigoryan A M.Transform-based image enhancement algorithms with performance measure[J].IEEE Transactions on Image Processing,2001,10(3):367-381.
  • 2[2]J.S.Lee.Digital Image Enhancement and Noise Filtering By use of Local Statistics[J].IEEE Transactions on Pattern Analysis and Machine Intellignece,1980,2 (2):165-168.
  • 3[3]M.Jourlin and J.C.Pinoli.J.Amodel for logarithmic image processing[J].Microscopy.1988,14 9(1):21-35.
  • 4[4]M.Jourlin and J.Pinoli.J.Contrast definition and contour detection for logarithmic image[J].Microscopy.1989,156 (10):33-40.
  • 5[5]G.Deng,L,W.Cahill,and G.R.Tobin.The Study of Logarithmic Image processing Model and Its Application to Image Enhancement[J].IEEE Transactions on Image Processing,1995,4 (4):506-512.
  • 6[6]R.A.Schowengerdt.Techniques for Image Processing and Classification in Remote Sensing[M].New York:Academic Press,1983.
  • 7[8]Danian Zheng,Jiaxin Wang,Zhenghong Xiso,Image Enhancement Based on Local Standard Deviation[J].Journal of Information & Computational Science,2005 (2):429-437.
  • 8曹厚德.实现传统X线摄影数字化CR、DR孰优[J].中国医院采购指南,2002,:57-58.
  • 9袁晓松,王秀坛,王希勤.基于人眼视觉特性的自适应的图像增强算法的研究[J].电子学报,1999,27(4):63-65. 被引量:16
  • 10滕洪岭.数字X射线摄影探测器[J].中国医疗器械杂志,2001,25(4):234-236. 被引量:5

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部