期刊文献+

(SmCo_7)_(100-x)(Cr_3C_2)_x(x=0~7)熔淬薄带的结构与磁性能 被引量:1

Microstructure and Magnetic Properties of (SmCo_7)_(100-x)(Cr_3C_2)_x(x=0-7) Melt-spun Ribbon
下载PDF
导出
摘要 采用熔淬法制备(SmCo7)100-x(Cr3C2)x(x=0~7)合金薄带。研究了Cr3C2添加量对合金相结构、微观组织和磁性能的影响。结果表明,淬速为20m/s时,(SmCo7)100-x(Cr3C2)x熔淬带的矫顽力随Cr3C2含量的增加而增大;剩磁先随x的增大而增高,在x=2时达最大值,然后随x的进一步增大而急剧降低。当熔淬速为20m/s时,(SmCo7)100-x(Cr3C2)x形成了1:7主相结构,同时还有少量的2:17H相和2:17R相。随Cr3C2含量的增加,2:17H相逐渐转变为2:17R相和2:7相。在高Cr3C2含量的合金中出现了含有Cr、Co、C的非磁性晶间相,该相通过抑制主相晶粒的长大及对畴壁的钉扎来提高材料的矫顽力。(SmCo7)93(Cr3C2)7合金在淬速40m/s时形成了非晶结构。该非晶合金在650℃保温6min后获得了远高于相同成分淬态合金的磁性能,Hci=635.4kA/m,Br=0.58T。 Melt-spun ribbons of (SmCo7)100-x(Cr3C2)x(x=0-7) have been prepared. The influence of Cr3C2 content on the structural and magnetic properties of the alloy were systematically investigated. With melt-spun speed of 20m/s, as the Cr3C2 content x increasing from 0 to 7, Hci of (SmCo7)100-x(Cr3C2)x ribbons increased from 33.2 kA/m to 595.7 kA/m, while Br increases first and then decreases with a peak value at x=2. (SmCo7)100-x(Cr3C2)x were formed in a hexagonal structure with a major phase of 1 : 7H. A small amount of secondary phase was also detected in the alloys. As the Cr3C2 content increasing, 2 :17H phase as a secondary phase were gradually transformed to 2 : 17R and 2 : 7 phases. A non-magnetic phase was found in the alloys with x=7 along the grain boundaries, which mainly consists of Cr, Co and C and can refine the microstructure and perform as magnetic domain wall pinning sites, resulting in improved Hoi. The (SmCo7)93(Cr3C2)7 ribbon melt-spun at 40m/s was amorphous, and it attained a relative high magnetic ProPerties after heat-treating at 650℃ for 6rain with Hci=635.4 kA/m, Br=0.58T, which is much better than that of the alloy of the same nominal composition without heat treatment.
出处 《磁性材料及器件》 CSCD 北大核心 2010年第1期15-19,共5页 Journal of Magnetic Materials and Devices
基金 湖南省自然科学基金资助项目(04JJ6029)
关键词 SmCo7 熔淬 碳化铬(Cr3C2) 微结构 磁性能 SmCo7 melt-spinning Cr3C2 microstructure magnetic property
  • 相关文献

参考文献19

  • 1Makridis S, Litsardakis G, Panagiotopoulos I, et al. Effects of boron substitution of the structural and magnetic properties of melt-spun Sm(Co, Fe, Zr)7.5 and Sm(Co, Fe, Zr, Cu)7.5 magnets [J]. J Appl Phys, 2002, 91(10): 7899-7901.
  • 2Goll D, Kleinschroth I, Sigle W, et al. Melt-spun precipitation-hardened Sm2(Co, Cu, Fe, Zr)17 magnets with abnormal temperature dependence of coercivity [J]. Appl Phys Lett, 2000, 76(8): 1054-1056.
  • 3Aich S, Ravindran V, Shield J. Highly coercive rapidly solidified Sm-Co alloys [J]. J Appl Phys, 2006, 99: 08B5211.
  • 4Yan A, Gutfleisch O, Handstein A, et al. Microstructure, microchemistry, and magnetic properties of melt-spun Sm(Co, Fe, Cu, Zr)z[J]. J Appl Phys, 2003, 93(10): 7975-7977.
  • 5Yan A, Bollero A, MOiler K Gutfleisch O. Fast development of high coercivity in melt-spun Sm(Co,Fe,Cu,Zr)z magnets [J]. Appl Phys Lett, 2002, 80(7): 1243-1245.
  • 6Gong W. Structure and magnetic properties of the Sm(Co0.68.xFe0.25Cu0.07Zrx)7.7 melt-spun alloys with Zr additions [J]. J Appl Phys, 2000, 87(9): 6713-6715.
  • 7Aich S, Shield J. Effect of Nb and C addititves on the microstructures and magnetic properties of rapidly solidified Sm-Co alloys [J]. J Alloys Compds, 2006, 425: 416-423.
  • 8祝要民,宋晓平,李晓园.铜含量对Sm(CoCuFeZr)_8磁性能的影响[J].兵器材料科学与工程,2005,28(1):6-9. 被引量:1
  • 9张晃暐,黄世腾,张正武,邱军浩,张文成,孙安正.SmCo7-xHfxCy合金薄带磁性能、相变化及显微结构研究[J].粉末冶金材料科学与工程,2008,13(3):171-176. 被引量:3
  • 10李丽娅,易健宏,葛毅成,彭元东.快淬Sm(Co_(bal)Fe_(0.1)Cu_(0.16)Zr_(0.04))_(7.0)的微波晶化及硬磁性[J].中国稀土学报,2008,26(1):66-70. 被引量:1

二级参考文献69

  • 1陈岁元,刘常升,才庆魁,马利霞,佗劲红.非晶Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9合金的激光纳米晶化研究[J].中国激光,2005,32(5):697-701. 被引量:4
  • 2赵鹤云,阚家德,柳清菊,刘佐权.几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究[J].物理学报,2005,54(4):1711-1718. 被引量:4
  • 3[5]Yoneyama T, Fukuno A, Ojima T. The Proceeding 4th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their Applications[C]. Dayton, Ohio: University of Dayton Press, 1980: 362~366
  • 4[8]Walmer M S, Chen C H, Walmer M H. IEEE Trans On Mag[J], 2000, MAG-36(5): 3 376~3 381
  • 5[10]Kim A S. J Appl Phys[J], 1998, 83(9): 6 715~6 717
  • 6[11]Kim A S. J Appl Phys[J], 1997, 81(8): 5 609~5 611
  • 7[13]Liu J F, Ding Y, Hadjipanayis G C. J Appl Phys[J], 1999, 85(3): 1 670~1 674
  • 8[14]Zhang Y, Corte-Real M, Hadjipanayis G C et al. J Appl Phys[J], 2000, 87(9): 6 722~6 724
  • 9[15]Liu J F, Zhang Y, Dimitrov D et al. J Appl Phys[J], 1999, 85(5): 2 800~2 804
  • 10[16]Tang W, Zhang Y, Hadjipanayis G C et al. J Magn Magn Mater[J], 2000, 212: 138~144

共引文献23

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部