期刊文献+

一类三维混沌系统的Bautin分岔分析 被引量:4

BAUTIN BIFURCATION OF A 3-DIMENSIONAL CHAOTIC SYSTEM
下载PDF
导出
摘要 研究一类具有三维自治常微分方程组形式的新的类Chen系统的余维二分岔.首先通过坐标变换,把原系统的平衡点平移到新系统的原点.通过对平移后所得新系统的Jacobi矩阵的分析,推导系统发生余维二Bautin分岔的参数条件.借助计算机对类Chen系统进行数值仿真,得到该系统发生Bautin分岔的分岔图,与理论推导结果相符合,从而验证了理论推导的正确性. The codimension-2 bifurcation in a three-dimensional differential system derived from the famous Chen system was investigated. At first, the equilibrium discussed in the original system was translated to the origin of the coordinates of the new dynamical system by the change of variables. Then the parameter conditions for the codimension-2 Bautin bifurcation were presented by analyzing the Jaeobian matrix of the corresponding system. Bifurcation diagrams of the aforementioned system, which demonstrate the Bautin bifurcation, were obtained by numerical simulations. It is shown that the numerical results agree very well with the analytical ones, thus validating the theoretical analysis.
出处 《动力学与控制学报》 2010年第1期39-42,共4页 Journal of Dynamics and Control
基金 广西青年科学基金(0832014)资助项目~~
关键词 类chen系统 余维二 Bautin分岔 数值仿真 Chen-like system, codimension-two, Bautin bifurcation, numerical simulation
  • 相关文献

参考文献10

  • 1Lorenz EN. Deterministic nonperiodic flow. J. Atmos. Sci. ,1963, 20:130 - 141.
  • 2Chen G R, Ueta T. Yet another chaotic attractor. Int. J. Bifurcation Chaos, 1999, 9 : 1465 - 1466.
  • 3Lu J H, Chen G R. A new chaotic attractor coined. Int. J. Bifurcation Chaos, 2002, 12:659-661.
  • 4Lu Z, Duan L. Codimension-2 Bautin bifurcation in the Lu system. Physics Letters A, 2007, 366 : 442 - 446.
  • 5Mello L F, Coelho S F. Degenerate Hopf bifurcation in the Lu system. Physics Letters A, 2009, 373 : 1116 - 1120.
  • 6徐慧东,谢建华.高维映射的Hopf-pitchfork分岔及其在碰撞振动系统中的应用[J].应用力学学报,2008,25(2):268-273. 被引量:3
  • 7Li Yuxia, Tang Wallace K S, Chen Guanrong. Generating hyperchaos via state feedback control. Int. J. Bifurcation Chaos, 2005, 15(10) :3367 -3375.
  • 8El-Dessoky M M. Synchronization and anti-synchronization of a hyperchaotic Chen system. Chaos, Solitons and Fractals, 2009, 39(4) : 1790 -1797.
  • 9王震,毛鹏伟.一类三维混沌系统的分叉及稳定性分析[J].动力学与控制学报,2008,6(1):16-21. 被引量:23
  • 10Kuznetsov Y A. Elements of Applied Bifurcation Theory, second ed. New York: Springer-Verlag. 1998.

二级参考文献20

  • 1Jianhua Xie,Wangcai Ding,E.H. Dowell,L. N. Virgin.Hopf-flip bifurcation of high dimensional maps and application to vibro-impact systems[J].Acta Mechanica Sinica,2005,21(4):402-410. 被引量:9
  • 2谢建华.一类碰撞振动系统的余维二分叉和Hopf分叉[J].应用数学和力学,1996,17(1):63-73. 被引量:39
  • 3[1]Sparrow C.The Lorenz equation:bifurcation,chaos,and strange attractor.NewYork:Springer,1982
  • 4[2]Chen G,Dong X.From chaos to order:methodologies,perspectives and applications.Singapore:world Scientific,1998
  • 5[3]L? J,Lu J,Chen S.Chaotic time series analysis and application.Wuhan:Wuhan University Press,2002
  • 6[4]Chen G,Ueta T.Yet another chaotic attractor.International Journal of Bifurcation and Chaos,1999,9 (7):1465~1466
  • 7[5]Ueta T,Chen G.Bifurcation analysis of Chen's attractor.International Journal of Bifurcation and Chaos,2000,10 (8):1917~1931
  • 8[6]L J,Chen G,Zhang S.A new chaotic attractor coined.International Journal of Bifurcation and Chaos,2002,12 (3):659~661
  • 9[7]L J,Chen G,Zhang S.Controlling in between the Lorenz and the Chen systems.International Journal of Bifurcation and Chaos,2002,12 (6):1417~1422
  • 10[8]L J,Zhou T S,Chen G,Zhang S.The compound of structure of Chen's attractor.International Journal of Bifurcation and Chaos,2002,12:855~858

共引文献24

同被引文献36

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部