期刊文献+

矩阵的Hadamard积和Fan积的特征值的界 被引量:2

The bounds for eigenvalues of the Hadamard product and Fan product of matrices
下载PDF
导出
摘要 讨论了矩阵的Hadamard积和Fan积的最小特征值的下界问题.令Mn为所有非奇异M-矩阵的集合,(1)若A,B∈Mn,B-1=(βij),则τ(A B-1)≥min1≤I≤n2aiiβii-τ(A)βii+τ(Aτ()B-)aii;(2)若A,B∈Mn,则τ(A*B)≥1m≤Ii≤nn[aiiτ(A)+bτ(A)-τ(A)τ(B)].同时又将这两结果与有关文献的结果进行比较. Hadamard and Fan product of lower bound of minimal eigenvalue problem for matrix are discussed. The following two results are proved. Let Mn, be the set of all n x n non-singular M-matrices. Firstly, if A, B ∈Mn,B^-1=(βy),then τ(A.B^-1)≥min 1≤i≤n[2aiiβii-τ(A)-aii/τ(B)];if A,B∈Mn,then τ(A*B)≥min 1≤i≤n[aiiτ(B)+buτ(A)-τ(A)τ(B)].The two results are compared with conclusions of related Literiture.
出处 《纺织高校基础科学学报》 CAS 2009年第4期426-429,共4页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10571113) 陕西师范大学重点基金资助项目(995281)
关键词 非奇异M-矩阵 HADAMARD积 Fan积 最小特征值 non-singular M-matrix Hadamard product Fan product the smallest eigenvalue
  • 相关文献

参考文献4

  • 1HORN R A,JOHNSON C R. Matrix analysis[ M]. Cambridge:Cambridge Univ Press, 1985.
  • 2HORN R A, JOHNSON C R. Topic in matrix analysis [ M ]. Cambridge:Cambridge Univ Press, 1991.
  • 3BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences [ M ]. Philadelphia: SIAM, 1994.
  • 4FANG M Z. Bounds for eigenvalues of the Hadamard product and Fan product of matrices [ J]. Linear Algebra and Its Applications ,2007,425:7-15.

同被引文献22

  • 1VUJICIC M, HERBUT F,VUJICIC G. Canonical form for matrices under unitary congruence transformations. I. Conjugate-normal matrices[J]. SIAM Journal on Applied Mathematics, 1972,23: 225-38.
  • 2FABENDER H,Kh IKRAMOV D. Some observations on the Youla form and conjugate-normal matrices [J]. Linear Algebra and its Applications, 2007,422: 29-38.
  • 3FABENDER H, Kh IKRAMOV D. Conjugate-normal matrices: A survey[J]. Linear Algebra and its Applications, 2008,429:1 425-1 441.
  • 4HORN R A, J OH NSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 1985.
  • 5ZHANG Fuzhen. Matrix theory basic results and techniques[M]. New York: Springer, 2011: 302.
  • 6FABENDER H, Kh IKRAMOV D. A note on an unusual type of polar decomposition[J]. Linear Algebra and its Applications, 2008,429 : 42-49.
  • 7FIEDLER M, MARKHAM T L. An inequality for the Hadamard product of an M-matrix and inverse M-matrix[J]. Linear Algebra and its Applications, 1998,101: 1-8.
  • 8HUANG R. Some inequalities for the Hadamard product and Fan product of matriees[J]. Linear Algebra and its Appli- cations, 2008,428 (7) :1551-1559.
  • 9CHEN S. A lower bound for the minimum eigenvalue of the Hadamard product of matrices[J]. Linear Algebra and its Applications, 2004,378 : 159-166.
  • 10ZHANG F Z. Matrix theory basic results and techniques[M]. Berlin:Springer, 2011:325-372.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部