摘要
研究了三次方程Ef(x,y):=f(mx+y)+f(mx-y)-mf(x+y)-mf(x-y)-2m(m2-1)f(x)=0在non-Archimedean空间中的稳定性问题,其中m为任一实数且m≠1且m≠0.证明了如果G为一赋范空间,X为一完备的non-Archimedean空间.f:G→X是一个映射,δ>0,使得当x,y∈G时,有‖Ef(x,y)‖≤δ(ρ(‖x‖3)+ρ(‖y‖3)),其中ρ:[0,+∞)→[0,+∞)满足ρ(|m|t)≤ρ(|m|)ρ(t)及ρ(|m|)<|m|,那么存在惟一三次映射Q:G→X,使得‖f(x)-Q(x)‖≤δ2|m|3ρ(‖x‖3)(x∈G).
Abstract : The stability of the cubic functional equation Ef(x,y):=f(mx+y)+f(mx-y)-mf(x+y)-mf(x-y)-2m(m2-1)f(x)=0 is investigated, m is a real constant with m≠1 and m≠0. It is proved that if G is a normed linear space, X is a complete non-Archimedean space.f:G→X is a mapping and δ 〉 0 such that ‖Ef(x,y)‖≤δ(ρ(‖x‖3)+ρ(‖y‖3))for all x,y∈G, where ρ:[0,+∞)→[0,+∞)is a function with ρ (|m|)ρ(t)及ρ(|m|)〈|m|,then there exists a unique cubic mapping Q:G→X such that ‖f(x)-Q(x)‖≤δ2|m|3ρ(‖x‖3)(x∈G).
出处
《纺织高校基础科学学报》
CAS
2009年第4期441-444,458,共5页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金资助项目(1087122410571113)