期刊文献+

Non-Archimedean空间中三次方程的稳定性

Stability of the cubic functional equation in a non-Archimedean space
下载PDF
导出
摘要 研究了三次方程Ef(x,y):=f(mx+y)+f(mx-y)-mf(x+y)-mf(x-y)-2m(m2-1)f(x)=0在non-Archimedean空间中的稳定性问题,其中m为任一实数且m≠1且m≠0.证明了如果G为一赋范空间,X为一完备的non-Archimedean空间.f:G→X是一个映射,δ>0,使得当x,y∈G时,有‖Ef(x,y)‖≤δ(ρ(‖x‖3)+ρ(‖y‖3)),其中ρ:[0,+∞)→[0,+∞)满足ρ(|m|t)≤ρ(|m|)ρ(t)及ρ(|m|)<|m|,那么存在惟一三次映射Q:G→X,使得‖f(x)-Q(x)‖≤δ2|m|3ρ(‖x‖3)(x∈G). Abstract : The stability of the cubic functional equation Ef(x,y):=f(mx+y)+f(mx-y)-mf(x+y)-mf(x-y)-2m(m2-1)f(x)=0 is investigated, m is a real constant with m≠1 and m≠0. It is proved that if G is a normed linear space, X is a complete non-Archimedean space.f:G→X is a mapping and δ 〉 0 such that ‖Ef(x,y)‖≤δ(ρ(‖x‖3)+ρ(‖y‖3))for all x,y∈G, where ρ:[0,+∞)→[0,+∞)is a function with ρ (|m|)ρ(t)及ρ(|m|)〈|m|,then there exists a unique cubic mapping Q:G→X such that ‖f(x)-Q(x)‖≤δ2|m|3ρ(‖x‖3)(x∈G).
出处 《纺织高校基础科学学报》 CAS 2009年第4期441-444,458,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(1087122410571113)
关键词 稳定性 三次方程 non-Archimedean空间 stability cubic functional equation non-Archimedean space
  • 相关文献

参考文献9

  • 1ULAM S M. A collection of mathematical problems [ M]. New York :Interscience Publishers, 1960.
  • 2ULAM S M. Problems in modern mathematics [ M]. New York: Wiley, 1964.
  • 3HYERS D H. On the stability of the linear functional equations [ J]. Proceedings of the National Academy of Sciences of United States of America, 1941,27 (4) : 222-224.
  • 4RASSIAS T M. On the stability of the linear mapping in Banach spaces[J]. Proceedings of the American Mathematical Society, 1978,72 (2) :297-300.
  • 5MOHAMMAD Sal Moslehian, GHADIR Sadeghi. A Mazur-Ulam theorem in non-Archimedean normed spaces[ J]. Nonlinear Analysis, 2008, 69(10): 3405-3408.
  • 6ARRIOLA L M, BEYER W A. Stability of the Cauchy functional equation over p-adie field [ J ]. Real Analysis Exchange, 2005,31 ( 1 ) : 125-132.
  • 7MOHAMMAD Sal Moslehian, RASSIAS T M. Stability of functional equations in non-Archimedean spaces [ J ]. Applicable Armlysis and Discrete Mathematics, 2007,1 (2) : 325-334.
  • 8JUN K M, KIM H M. The generalized Hyers-Ulam-Rsaaias stability of a cubic function equation [J]. Journal of Mathematical Analysis and Applications, 2002,274(2) :867-878.
  • 9RASSIAS J M. Solution of the Ulam stability problem for cubic mapping [ J ]. Glasnik Matematicki, 2001,36 (56) : 63-72.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部