期刊文献+

有限群的弱m-正规子群 被引量:1

On weak m-normal subgroups in finite group
下载PDF
导出
摘要 定义了有限群G的弱m-正规子群,并在此定义下,赋予有限群的子群的诸多性质,得出(1)若G的Sylow-子群在G中弱m-正规,且至少有一个Sylow-子群在G的极大子群M中正规,则M为可解群.(2)若有限群G的Sylow-子群都是弱m-正规的,且在G的极大子群M中没有正规的Sylow-子群,则M是非可解的.(3)设有限群G的Sylow-子群都是弱m-正规的,G的极大子群M可解的充分必要条件是至少有一个Sylow-子群在M中正规.(4)若G的Sylow-子群都在G中弱m-正规,且至少有一个Sylow-子群在G的极大子群M中正规,M至少有3个不同的素因子,则G可解.(5)设M为G的任一极大子群,且M为可解群.若M的每个Sylow-子群非循环且它们的极大子群都在G中弱m-正规,则G可解. With the concept of weak m-normal en : ( 1 ) When all Sylow subgroups about G are normal subgroup of M, M is a maximal subgro subgroups, some results about weak m-normal subgroups are giv-weak m-normal subgroups, and there is a Sylow subgroup which is up of G, then M is a solvable group. (2) When all Sylow subgroups about G are weak m-normal subgroups, and there is no any Sylow subgroup which is normal subgroup of M , M is a maximal subgroup of G , then M is not a solvable group. (3) Let G be a finite group, and M is a maximal subgroup of G , all Sylow subgroups about G are weak m-normal subgroups, then M is a solvable group if and only if there is a Sylow subgroup which is normal subgroup of M. (4) When all Sylow subgroups about G are weak m-normal subgroups, and there is a Sylow subgroup which is normal subgroup of of M,M is a maximal subgroup ofG ,and |v|=P1^a1P2^a2…Pn^an (n≥3) ,then finite groupG is a solvable group. (5)When M is a maximal subgroup of G, and M is a solvable group, all Sylow subgroups about M are not cyclic groups, and they are weak mnormal subgroups of G, then finite group G is a solvable group .
作者 徐颖吾 刘莉
出处 《纺织高校基础科学学报》 CAS 2009年第4期516-519,共4页 Basic Sciences Journal of Textile Universities
基金 陕西省教育厅自然科学专项基金资助项目(05JK207)
关键词 弱m-正规子群 Sylow-子群 可解群 幂零群 weak m-normal subgroups Sylow subgroups solvable groups niloptent groups
  • 相关文献

参考文献7

  • 1陈重穆.内外三群和极小非三群[M].重庆:西南师范大学出版社,1988.
  • 2WANG Y M. C-Normality of groups and its properties[ J ]. Journal of Algebra, 1996,188:954-956.
  • 3ZHANG Xinjian, GUO Wenbin, SHUM K. P. s-Normal subgroups of finite groups [ J ]. Applied Algebra and Discreate structures,2003,1 (2) :99 - 108.
  • 4宋迎春.有限群的m-正规子群[J].湘潭大学自然科学学报,2002,24(2):6-7. 被引量:2
  • 5GUO W. The theory of classes of groups [ M ]. Beijing-New York-Dordrecht-Boston-London : Science Press-Kluwer Academic Publishers ,2000.
  • 6张远达.有限群的构造(上册)[M].北京:科学出版社,1987
  • 7徐明耀.有限群导引(上册)[M].北京:科学出版社,1999..

二级参考文献3

  • 1海进科.有限群的S-拟正规子群[J].曲阜师范大学学报(自然科学版),1995,21(1):23-25. 被引量:3
  • 2张远达.有限群的构造(上册)[M].北京:科学出版社,1987..
  • 3宋迎春.sylow子群和几乎正规子群[J].吉首大学学报,2001,22(2):17-17.

共引文献19

同被引文献14

  • 1徐颖吾.极小子群的S-正规性对有限群构造的影响[J].纺织高校基础科学学报,2005,18(4):320-322. 被引量:3
  • 2徐颖吾,孟伟,卢家宽.NE-子群与有限群的结构[J].西安工程科技学院学报,2007,21(2):257-261. 被引量:1
  • 3徐颖吾.极小子群的中心化子与群的p-可解性[J].纺织高校基础科学学报,2007,20(3):227-230. 被引量:1
  • 4KEGEL O H. Sylow gruppen and subnormalteiler endlicher gruppen[J]. Z Math, 1962,78:205-221.
  • 5DESKINS W E. On quasinormal subgroup of finite groups[J]. Z Math, 1963,82:125-132.
  • 6SCHMID P. Subgroups permutable with all Sylow subgroups[J]. J Algebra, 1998,207 (1) .. 285-293.
  • 7BALLESTER-Bolinches A B,PEDRAZA-Aquilera M C. Sufficient conditions for supersolvability of finite groups[J]. Journal of Pure and Applied Algebra, 1998,127 .. 118-123.
  • 8KHALED A Al-sharo. On nearly S-Permutable subgroups of finite groups[J]. Communication in Algebra, 2012,40 (1) ..315-326.
  • 9SHEN Zheneai, LI Shirong, SHI Wujie. Finite group with normally embedded subgroups[J]. J Group Theory, 2010,13: 257-265.
  • 10胡佩特.有限群论(第一卷第二分册)[M].福州:福建人民出版社,1992;12-13.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部