期刊文献+

复杂曲面拟合的相关向量机模型及其泛化能力 被引量:2

Relevance Vector Machine Regression Models for Complex Surface Fitting and Its Generalization Ability
原文传递
导出
摘要 介绍相关向量机回归(RVM,Relevance Vector Machine)的基本原理。分析采用高斯径向基核函数时,核函数参数与模型性能之间的关系,并给出核函数参数选择建议。针对一个复杂非线性函数,采用均匀网格取样,并分别增加正态分布噪声和均匀分布噪声,分析RVM回归分析的拟合和泛化能力并与支持向量机(SVM,Support Vector Machine)回归模型作了比较。结果表明,SVM对样本数据的拟合能力优于RVM。但对于非训练样本,RVM的泛化能力要优于SVM,而且RVM模型更加稀疏,且在给出预测值的同时能够给出预测值的置信区间。 A brief introduction of RVM (Relevance vector machine) Regression models is given firstly. The Gaussian radial basis function is selected as the kernel function in RVM and the relationship between kernel function parameters and model performance is analyzed. With that a parameter selection method is put forward. Then With the equal intervals space filling and a complex nonlinear function, normal-distributed and uniform-distributed noise is added and the fitting and generalization ability of RVM regression is analyzed and the results are compared with support vector machine (SVM) regression models. The results show that for the training samples, the fitting ability of SVM regression models is better than RVM regression models. But for the testing samples, the generalization ability of RVM regression models is much better than SVM regression models, i.e. the RVM regression models are sparser than SVM models. Furthermore, RVM regression models can give not only the predicted values but also their confidence intervals.
出处 《系统工程》 CSCD 北大核心 2009年第12期73-78,共6页 Systems Engineering
基金 国家自然科学基金资助项目(7093100470802043)
关键词 支持向量机 关联向量机 回归 泛化能力 Support Vector Machine Relevance Vector Machine Regression Generalization Ability
  • 相关文献

参考文献12

  • 1Scholkoph B, et al. New support vector algorithms [J]. Neural Computation, 2000,12 : 1207 - 1245.
  • 2Vapnik N V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995.
  • 3胡蓉,汪国强,廖芹.基于SVM的密炼机混炼胶的粘度预测[J].华南理工大学学报(自然科学版),2004,32(9):93-96. 被引量:3
  • 4张浩然,汪晓东,张长江.一种鲁棒回归支持向量机及其学习算法[J].南京理工大学学报,2006,30(3):311-314. 被引量:6
  • 5Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine learning research, 2001,1 : 211- 244.
  • 6Kim J, et al. A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism[J]. IEEE Transactions on Fuzzy Systems, 2006,14 (2) : 222 - 231.
  • 7Zhong M J. A variational method for learning sparse Bayesian regression[J]. Neurocomputing, 2006, 69 : 2351-2355.
  • 8Yuan J,Bo L F,Wang K S,Yu T. Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression[J]. Expert Systems with Applicaitons, 2009,36 : 3982- 3989.
  • 9陈佳,颜学峰,钱锋.基于贝叶斯学习的关联向量机及其在软测量中的应用[J].华东理工大学学报(自然科学版),2007,33(1):115-119. 被引量:11
  • 10Piggio T, Girosi F. Networks for approximation and learning[C]//Proeeedings of the IEEE. US, 1990,78(9) :1481-1497.

二级参考文献58

共引文献53

同被引文献25

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部