期刊文献+

一种基于粒子滤波的任意姿态头部椭圆轮廓跟踪方法 被引量:9

A method for tracking elliptical contour of arbitrary-pose head based on particle filter
下载PDF
导出
摘要 结合粒子滤波思想,给出了一种适用于复杂背景和较远距离下跟踪任意姿态人体头部椭圆轮廓的方法。该方法采用双重随机采样策略,即在预测值附近通过均匀采样产生初始粒子以保证其多样性,在权值更新后对具有较高权值的粒子进行高斯采样以保证重采样过程的快速收敛性。在权值更新过程中,利用分块颜色直方图实现模板椭圆同粒子椭圆之间的颜色匹配,利用最大梯度距离测度(DMG)对粒子椭圆的边缘拟合程度进行度量,最后利用D-S证据思想对上述两种测度进行融合。实验结果不仅验证了此方法对于复杂背景和人体头部的任意姿态具有较强的鲁棒性和有效性,而且证实,此方法也适用于相对较远的距离范围。 Based on particle filters, a head elliptical contour tracking method applicable to complex background, large distance range and arbitrary pose is proposed in this paper. The method applies the strategy of dual stochastic sampling: the uniform sampling around predicted value is utilized to produce initial particles, which can ensure particles' diversity; after weights updated, the Gaussian sampling is adopted to resample the particles to achieve high convergence. In weights updating, color matching between template elliptical sub-image and particle elliptical sub-image is implemented by a kind of block histogram, and the distance to maximum gradient point (DMG) on normal line is applied to measure out the particle ellipses' similarity to head edges, and finally, by the D-S theory the above two measurements are fused to update the particles' weights. The experiments results confirm the method's validity, robustness to complex background and arbitrary head pose, and applicability to large distance range.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第12期1288-1293,共6页 Chinese High Technology Letters
基金 国家自然科学基金(60705026) 863计划(2006AA04Z258 2006AA040202-02)资助项目
关键词 头部椭圆轮廓 粒子滤波 双重随机采样 最大梯度距离测度(DMG) 分块直方图 head elliptical contour, particle filter, dual stochastic sampling, distance to maximum gradient point (DMG), block histogram
  • 相关文献

参考文献9

  • 1Murphy-Chutorian E, Trivedi M M. HyHOPE: hybrid head orientation and position estimation for vision-based driver head tracking. IEEE Intelligent Vehicles Symposium, 2008, 4 (6) : 512-517.
  • 2Yang T, Pan Q, Li J, et al. Real-time head tracking system with an active camera. In: Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004. 1910- 1914.
  • 3Chen M, Kee S. Head tracking with shape modeling and detection. In: Proceedings of the 2nd Canadian Conference on Computer and Robot Vision, Victoria, BC, Canada, 2005. 483-488.
  • 4安国成,吴镇扬.基于先验知识模板更新的头部跟踪算法[J].光电工程,2008,35(6):10-14. 被引量:3
  • 5Kwolek B. Person following and mobile camera localization using particle filters. In: Proceedings of the 4th International Workshop on Robot Motion and Control, Poznan, Poland, 2004. 265-270.
  • 6Ababsa F, Mallem M, Roussel D. Comparison between particle filter approach and Kalman filter-based technique for head tracking in augmented reality systems. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004. 1021-1026.
  • 7Jin Y, Mokhtarian F. Data fusion for robust head tracking by particles. In: Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Washington D. C., USA, 2005. 33-40.
  • 8Zeng Z, Ma S. Head tracking by active particle filtering. In: Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington D. C., USA, 2002. 82-87.
  • 9Li Y, AI H, Huang C, et al. Robust head tracking based on a multi-state particle filter. In: Proceedings of the IEEE 7th International Conference on Automatic Face and Gesture Recognition, Southampton, UK, 2006. 335-340.

二级参考文献9

  • 1彭宁嵩,杨杰,周大可,刘志.Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129. 被引量:23
  • 2张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 3LI Yuan, AI Hai-zhou, HUANG Chang, et al, Robust Head Tracking Based on a Multi-State Particle Filter [C]// 7th International Conference o Automatic Face and Gesture Recognition, [S.l.]: IEEE, 2006: 335-340.
  • 4Nummiaro Katja, Koller-meier Esther, Van Gool Luc. Object Tracking with an Adaptive Color-Based Particle Filter [C]// Proceedings of the 24th DAGM Symposium on Pattern Recognition. London, UK: Springer-Verlag, 2003:591-599.
  • 5Fukunaga Keinosuke, Hostetler Larry D. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
  • 6CHENG Yizong. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 7Comaniciu Dorin, Ramesh Visvanathan. Mean shift and optimal prediction for efficient object tracking [C]// IEEE International Conference on Image Processing. Vancouver, BC, Canada: IEEE, 2000, 3: 70-733.
  • 8Collins Robert T. Mean-shift blob tracking through scale space [J]. IEEE Conference on Computer Vision and Pattern Recognition, 2003, 2(18/20): 234-240.
  • 9Comaniciu Dorin, Ramesh Visvanathan, Meer Peter. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.

共引文献2

同被引文献120

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部