摘要
In this article, a new reduced-dimensional adaptive processing algorithm based on joint pixels sum-difference data for clutter rejection is proposed. The sum-difference data are obtained by orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multi-satellite radar system. In the sense of statistical expectation, the sum-difference data contain the common and different information of the SAR images. Therefore, the objective of clutter cancellation can be achieved by adaptive processing. Moreover, based on the residual image after clutter rejection, statistical analysis of constant false-alarm rate (CFAR) detection of moving targets is also presented. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm even with heterogeneous clutter and image co-registration error.
In this article, a new reduced-dimensional adaptive processing algorithm based on joint pixels sum-difference data for clutter rejection is proposed. The sum-difference data are obtained by orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multi-satellite radar system. In the sense of statistical expectation, the sum-difference data contain the common and different information of the SAR images. Therefore, the objective of clutter cancellation can be achieved by adaptive processing. Moreover, based on the residual image after clutter rejection, statistical analysis of constant false-alarm rate (CFAR) detection of moving targets is also presented. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm even with heterogeneous clutter and image co-registration error.
基金
National Natural Science Foundation of China (60736009, 60901066)