期刊文献+

基于Montgomery的分段并行标量乘快速算法

Subsection simultaneous fast scalar multiplication algorithm based on Montgomery algorithm
下载PDF
导出
摘要 在椭圆曲线二进制域上,Montgomery算法利用在计算kP过程中只需计算x坐标,在最后才恢复y坐标的特性,使该算法的计算量更少。在此基础上提出基于Montgomery的分段并行标量乘算法来更进一步提高算法的效率,经分析,将整数标量分两段并行计算,算法效率可提高约25%,将其分三段时其效率可提高约37%。通过编程实现验证了新算法的效率确实有明显提高,新算法对椭圆曲线标量乘快速实现有实际意义。 In the elliptic curve binary field,it needs less computation amount for that the Montgomery algorithm only computes the x coordinate in the whole course and gets the y coordinate in the last step.A new computational algorithm based on the Montgomery subsection method is proposed to enhance the efficiency further for computer kP, the computation amount decreases 25% for the new algorithm of two subsection and 37% for the new algorithm of three subsection compared with the original algorithm.The efficiency of the new algorithm is proved to be improved by the program implementation.The new algorithm possesses good performance on elliptic curve scalar multiplication.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第6期112-115,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60773120) 北京市自然科学基金(No.4092040) 北京电子科技学院信息安全与保密重点实验室资助项目(No.YZDJ0607)~~
关键词 椭圆曲线 标量乘 Montgomery方法 elliptic curve scalar multiplication Montgomery algorithm
  • 相关文献

参考文献5

  • 1Montgomery P.Speeding the pollard and elliptic curve method of facteorization[J].Athematics of Computation, 1985,48:209-224.
  • 2HANKERSON D,MENEZES A,VANSTONE S.椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.
  • 3Lopez J,Dahab R.Fast multiplication on elliptic curves over GF(2m) without precomputation[C]//Cryptographic Hardware and Embedded Systems-CHES' 99,1999 : 316-325.
  • 4白国强,黄谆,陈弘毅.椭圆曲线数字签名算法中的快速验证算法[J].清华大学学报(自然科学版),2003,43(4):564-568. 被引量:11
  • 5Mamiya H,Miyaji A,Morimoto H.Efficient countermeasures against RPA,DPA,and SPA^*[C]//Cryptographic Hardware and Embedded Systems-CHES 2004,2004 : 343-356.

二级参考文献6

  • 1IEEE Std P1363-2000. IEEE Stdandard Specifications for Public-Key Cryptography [S]. IEEE Computer Society,August 20, 2000.
  • 2Blake I, Seroussi G, Smart N. Elliptic Curves in Cryptography [M]. Cambridge, United Kingdom :Cambridge University Press, 1999.
  • 3Hankerson D, Lopez J, Menezes A. Software implementation of elliptic curve cryptography over binery fields [A].Cryptographic Hardware and Embedded Systems-CHES'2000[C]. Berlin, Germany: SpringerVerlag, 2000. 1 - 24.
  • 4Okada S, Torii N, Itoh K, et al. Implementation of elliptic curve cryptographic coprocessor over GF(2^m) on an FPGA[A]. Cryptographic Hardware and Embedded Systems--CHES'2000[C]. Berlin, Germany:Springer-Verlag, 2000. 25 - 40.
  • 5Lopez J, Dahab R. Fast multiplication on elliptic curves over GF(2^n) without precomputation [A]. Cryptographic Hardware and Embedded Systems-CHES'99 [C].Berlin,Germany: Springer-Verlag, 1999. 316 - 327.
  • 6Montgomery P. Speeding the Pollard and elliptic curve method of facteorization [J]. Mathematics of Computation,1985, 48: 209-224.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部