期刊文献+

一种应用复杂网络特征的K-means初始化方法 被引量:2

K-means initialization method using properties of complex network
下载PDF
导出
摘要 K-means算法是一种基于划分的聚类算法,具有算法简单且收敛速度快的特点。但该算法的性能依赖于聚类中心的初始位置的选择。拓展了复杂网络的重要特征,针对带有属性的数据对象所构成的数据集,定义了多维属性对象的度、聚集度和聚集系数,选取度和聚集系数高的K个点作为K-means聚类的初始中心点。实验数据表明,改进后的K-means算法较传统的算法具有更高的效率和准确度。 K-means algorithm is a partition-based clustering algorithm.It is simple and fast to converge,the performance of K- means algorithm depends on that how to choose K samples as the initial cluster centers.This paper develops the properties of complex network,and defines degree,congregated degree and congregated coefficient of objects with feature,and chooses the K nodes whose the degree and congregated coefficient are larger than the others as the initial cluster centers.The experiment shows that the improved K-means clustering algorithm is more efficient than the original K-means clustering algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第6期127-129,共3页 Computer Engineering and Applications
关键词 聚类 K—means算法 复杂网络特征 聚类初始点 clustering K-means complex network characteristics initial cluster centers
  • 相关文献

参考文献9

  • 1Han Jia-wei,Kamber M.Data mining:Concepts and techniques[M]. 2nd ed.USA: Morgan Kaufmann Publishers Inc,2001.
  • 2MacQueen J B.Some methods for classification and analysis of multivariate observations[C]//LeCam L M,Neyman J.Proc of the 5th Berkeley Symp on Mathematical Statistics and Probalility. Bekeley: University of California Press, 1967,1 : 281-297.
  • 3Milligan G W.An examination of the effect of six types of error perturbation on fifteen clustering algorithms[J].Psychometrika, 1980, 45(3) :325-342.
  • 4Ward J H.Hierarchical grouping to optimize an objective function[J]. Journal of American Statistical Association, 1963,58:236-244.
  • 5Higgs R E,Bemis K G,Watson I A,et al.Experimental designs for selecting molecules from large chemical databases[J].Journal of Chemical Information and Computer Sciences, 1997,37(5) : 861-870.
  • 6Snarey M,Terrett N K,Willet P,et al.Comparison of algorithms for dissimilarity-based compound selection[J]Journal of Molecular Graphics & Modeling, 1997,15(6) :372-385.
  • 7Kaufman L,Rousseeuw P J.Finding groups in data:An introduction to cluster analysis[M].Canada:John Wiley & Sons,Inc,1990.
  • 8钱线,黄萱菁,吴立德.初始化K-means的谱方法[J].自动化学报,2007,33(4):342-346. 被引量:32
  • 9UCI.Datasets from UCI[EB/OL].(2005-03-23).http://www.sgi.cond tech/mlc/db/iris.all.

二级参考文献12

  • 1Milligan G W.An examination of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika,1980,45(3):325~342
  • 2Ward J H.Hierarchical grouping to optimize an objective function.Journal of American Statistical Association,1963,58:236~244
  • 3Higgs R E,Bemis K G,Watson I A,Wikel J H.Experimental designs for selecting molecules from large chemical databases.Journal of Chemical Information and Computer Sciences,1997,37(5):861~870
  • 4Snarey M,Terrett N K,Willet P,Wilton D J.Comparison of algorithms for dissimilarity-based compound selection.Journal of Molecular Graphics & Modelling,1997,15(6):372~385
  • 5Kaufman L,Rousseeuw P J.Finding Groups in Data.An Introduction to Cluster Analysis.Canada:John Wiley & Sons,Inc.,1990
  • 6Ng A Y,Jordan M I,Weiss Y.On spectral clustering:analysis and an algorithm In:Proceedings of Neural Information Processing Systems Conference.2001
  • 7Golub Gene H,Van Loan Charles F.Matrix Computations,3rd edition.London:The Johns Hopkins University Press,1996,405~414
  • 8Rao C R,Rao M B.Matrix Algebra and Its Applications to Statistics.World Scientific,1998.471
  • 9Bapat R B,Rachava T E S.Nonnegative Matirces and Applications.Cambridge University Press,1997.163~164
  • 10Zhao Y,Karypis G.Criterion Functions for Document Clustering:Experiments and Analysis (Technical Report) 2001

共引文献31

同被引文献90

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部