期刊文献+

ICA在噪声源故障信号分离中的应用

Application of noise source fault signals separation with ICA
下载PDF
导出
摘要 基于信息融合的思想,简介了独立分量分析方法;以Matlab为辅助工具,应用独立分量分析方法中比较成熟的快速算法FastICA,给出了语音信号分离的独立分量分析方法的具体途径,并对其分离效果进行了分析;然后,应用该方法对轴承的故障噪声特征信号成功地实现了提取。这两个实例的验证结果表明,采用独立分量分析方法对噪声源信号分离是有效的,应用前景是广阔的。 Based on the MATLAB tool, the well-known algorithm named FastICA for ICA was used to give the approach for noise sound source signals separation, and some analyses were discribed. The examples of sound signals separation and beating fault signals extraction demonstrate that the ICA method is effective for noise signals separation.
出处 《信息技术》 2010年第2期91-93,共3页 Information Technology
关键词 独立分量分析 信号分离 噪声 语音信号 轴承故障信号 independent component analysis signals separation noise sound signals beating fault signals
  • 相关文献

参考文献3

二级参考文献22

  • 1李熠,何永勇,李志农,褚福磊.盲源分离和小波消噪在碰摩声频信号分析中的应用研究[J].机械强度,2005,27(6):719-724. 被引量:9
  • 2徐京华,童勤业,刘仁.大脑皮层信息传输和精神分裂症[J].生物物理学报,1996,12(1):103-108. 被引量:22
  • 3Anishchenko V. Stochastic resonance: noise-enhanced order [J]. Physics-Uspekhi, 1999, 42(1): 7-36.
  • 4Grassberger. Toward a quantitative theory of self-generated complexity[J]. Int. J. Theroy. Phys, 1986, 25: 907-936.
  • 5Hao B L. Symbolic dynamics and characterization of complexity [J]. PhysicaD, 1991, 51, 161-176.
  • 6Wackerbauer R. A comparative classification of complexity measures[J]. Chaos, Solitons & Fractals, 1994, 4(1): 133-173.
  • 7Kasper F, Schuster H G. Easily calculable measure for the complexity of spatiotemporal patterns[J]. Physical review A, 1987, 36(2):842-848.
  • 8Abraham Lempel, Jacob Ziv. On the complexity of finite sequences [J]. IEEE Transactions on information theory, 1976, 22(1): 75-81.
  • 9Belouchrani A, Amin M. Blind source separation based on time-frequency signal representations[J]. IEEE Trans. on Signal Processing, 1998, 46(11) : 2888-2897.
  • 10Leyman A R, Kamran Z M, Abed-Meraim K. Higher-order time frequency-based blind source separation technique[J]. Signal Processing Letters, IEEE, 2000, 7(7): 193-196.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部