期刊文献+

用于结构损伤识别的神经网络输入选取规则探究 被引量:4

Exploration of selection rules for inputs of neural network used on structural damage identification
下载PDF
导出
摘要 将神经网络作为模式识别工具用于结构损伤位置识别时,其识别效果除了要受到网络隐层数目、各隐层神经元数目、神经元传递函数的形式、训练样本的数量与质量及训练方法的影响外,还会受网络输入性能的影响。在其他因素均相同的条件下,网络输入对网络性能起着决定性作用。为解决网络输入的选取问题,从网络功能、类别可分性和噪声的影响三个方面对网络输入的选取进行了分析研究,提出了用于结构损伤识别的神经网络输入选取的一般性规则,对采用神经网络处理模式识别问题具有参考价值。 When the diagnosis of damage location is taken as a problem of mode identification, neural network can be used as a pattern classifier. The identification effects will be affected by the number of the connotative layers and the nerve cells, the transfer function mode, the training samples, the training method and the performance of the inputs. Given the same conditions, the performance of the inputs is crucial to the performance of the neural network. To solve the problem of inputs sealecfion, three aspects : the function of the neural network, the separability of the inputs and the effect of noise, are taken into consideration. The selection rules of neural network inputs that have been put forward in this article is instructive to those who will use neural network to solve the problem of mode identification.
出处 《四川建筑科学研究》 北大核心 2010年第1期63-67,共5页 Sichuan Building Science
基金 西南交通大学青年教师科研起步资助项目(2007Q108) 铁道部科技研究开发计划课题智能化桥梁结构研究(Z2006-048)
关键词 损伤识别 神经网络 网络输入 模式识别 damage identification neural network network input mode identification
  • 相关文献

参考文献11

  • 1Worden K. Structural fault detection using a novelty measure, Journalof Sound and Vibration, 1997, 201:85-101.
  • 2Ni Y Q, Li H, Wang J Y, at el. Implementation issues of novelty detection technique for cable - supported bridges instrumented with a long - term monitoring system, Proceedings of SPIE, 2002,4704 : 225 -236.
  • 3高赞明,孙宗光,倪一清.基于振动方法的汲水门大桥损伤检测研究[J].地震工程与工程振动,2001(S1):117-124. 被引量:35
  • 4Ko J M, Ni Y Q, Chan, et al. Feasibility of damage detection of Tsing Ma Bridge using vibration measurements, Proceedings of SPIE, 2000,3995 : 370-381.
  • 5Sohn H, Worden K, Farrar C R, et al. Novelty detection under changing environmental conditions, Proceedings of SPIE, 2001, 4330: 108-118.
  • 6Zhao J, DeWolf,John T. Sensitivity study for vibrational parameters used in damage detection. Journal of structural engineering, 1999, 125(4) :410-416.
  • 7Cawley P,Adams R D. Location of defects in structures from measurements of natural frequencies, Journal of Strain Analysis, 1979, 14(2) :49-57.
  • 8Hearn G, Testa R B. Modal Analysis for Damage Detection in Structures. Journal of Structural Engineering, 1991, 117 ( 10 ) : 3042-3063.
  • 9陈素文.高层建筑人工神经网络损伤识别及安全性综合评判[D].上海:同济大学,2001.
  • 10Lam K F, Ko M J, Wong C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration, 1998,210( 1 ) :91-115.

二级参考文献10

  • 1Ko, J. M,Sun. Z. G,Ni,Y.Q.Modal analysis of cable-stayed Kep Shui Mun Bridge taking cable local vibration intoconsideration[].Proceedings of the International Conference on Advances in Structural Dynamics.2000
  • 2Ko. J.M,Ni. Y.Q,Chan.T.H.T.Feasibility of damage detection of Tsing Ma Bridge using vibration measurements[].Nondestructive Evaluation of Highways Utilities and Pipelines IV.2000
  • 3Ortiz, J,Ferregut, C,Osegueda, R. A.Damage detection from vibration measurements using neural network technology[].Artificial Neural Networks for Civil Engineers.1997
  • 4Sohn H,Law K H.A Bayesian probabilistic approach for structure damage detection[].Earthquake Engineering and Structural Dynamics.1997
  • 5Worden K.Structural fault detection using a novelty measure[].Journal of Sound and Vibration.1997
  • 6Ko J M,Ni Y Q,Chan T H T.Dynamic Monitoring of Structural Health in Cable-Supported Bridges[].Smart Structures and Materials:Smart Systems for BridgesStructures and Highways.1999
  • 7CHANT HT,NI Y Q,KOJ M.Neural network novelty filtering foranomaly detection of Tsing Ma Bridge cables[].Structural HealthMonitoring.1999
  • 8Ni Y Q,Zhou X T,Ko J M,Wang B S.vibration-based damage localization in Ting Kau bridge using probabilistic neural network[].International Conference on Advances in Structural Dynamics.2000
  • 9Ko.J.M.and Ni,Y. Q.Development of vibration-based damage detection methodology for civil engineering structures[].Proceedings of the st International Conference on Structural Engineeiring.1999
  • 10Ni Y Q,Wang J Y,Ko J M.Simulation studies of damage location in tsing ma bridge deck[].Pro- ceedings of the SPIENondestructive Evaluation of High- waysUtilitiesand Pipelines.2000

共引文献34

同被引文献29

  • 1孙宗光,高赞明,倪一清.基于神经网络的损伤构件及损伤程度识别[J].工程力学,2006,23(2):18-22. 被引量:28
  • 2闫桂荣,段忠东,欧进萍.基于结构振动信息的损伤识别研究综述[J].地震工程与工程振动,2007,27(3):95-103. 被引量:48
  • 3HyvarinenA, Oja E. Independent component analysis : algorithms and applications [ J ]. Neural Networks. 2000,13 (4 - 5 ) : 411 - 430.
  • 4Choi S, Cichocki A,Park H M, et al. Blind Source Separation and Independent Component Analysis:A Review[ J ]. Neural Information Processing. 2005,6( 1 ) :1 -57.
  • 5McNeill S I, Zimmerman D C. A framework for blind modal identification using joint approximate diagonalization [ J ]. Mechanical Systems and Signal Processing. 2008,22(7) :1526 -1548.
  • 6Kerschen G, Poncelet F, Golinval J C. Physical interpretation of independent component analysis in structural dynamics [ J ]. Mechanical Systems and Signal Processing. 2007,21 (4) :1561 -1575.
  • 7Widodo A, Yang B S, Han Tian. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors [ J ]. Expert Systems with Applications. 2007,32 (2) :299 -312.
  • 8Song H Z, Zhong L, Han B. Structural damage detection by integrating independent component analysis and support vector machine [ J ]. International Journal of Systems Science. 2006,37 ( 13 ) :961 - 967.
  • 9姜绍飞.基于神经网络的结构优化与损伤检测[M]北京:科学出版社,2002.
  • 10周开利;康耀红.神经网络模型及其MATLAB仿真程序设计[M]北京:清华大学出版社,2005.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部