摘要
设G是一个图,对于两个正整数s和t,记σs.t=S,t{ | N(S) | + | N(T) |- 1/2 |N(S)∩N(T)|: | S| = s, | T| = t,且S∪T是G的独立集}.本文利用插点方法,给出了关于(s+t)或(s+t+1)一连通图g是哈密顿的,哈密尔顿连通的或1-哈密尔顿的统一的证明.其充分条件是关于σt,s与n(Y)的不等式,这里Y-S∪T是图G的任一独立集,n(Y)= |{v∈V(G):dist(v,Y)≤2}|.
Let G be a graph. For two positive integers s and t, set σs.t = min S,t{ | N(S) | + | N(T) |- 1/2 |N(S)∩N(T)|: | S| = s, | T| = t, and S ∪ T is an independent set of Gt. In this paper, we will use the technique of the vertex insertion on l-connected ( 1 = s + t or s + t + 1 ) graphs to provide a unified proof for G to be lmmilonian, hamilton-connected, or l-hamiltonian the sufficient conditioos are expressed by the inequality concerning σt,s, and n(Y), where Y=S ∪ T, and n(Y)= |{v∈V(G): dist(v,Y)≤2}|.
出处
《江苏教育学院学报(自然科学版)》
2003年第1期7-11,共5页
Journal of Jiangsu Institute of Education(Social Science)
关键词
哈密尔顿性
插点
邻域并
hamihonicity, vertex insertion, the neighborhood imion.