期刊文献+

五自由度气浮仿真试验台的动力学建模 被引量:10

Dynamic Modeling for the 5-DoF Air Bearing Spacecraft Simulator
下载PDF
导出
摘要 五自由度气浮仿真试验台是在地面模拟微小卫星空间运动的一种重要仿真设备。通过分析试验台的系统结构,定义世界系、轨道系及本体系三个坐标系,建立了其所模拟微小卫星空间运动的一般情况下轨道动力学和姿态动力学模型,最后根据试验台目前执行机构为冷气推进装置的实际工作情况导出了试验台状态方程,为下一步试验台模拟微小卫星的自治飞行提供了理论基础。 The five degrees of freedom air bearing spacecraft simulator is an important device to simulate micro-satellite' s autonomous attitude control and orbital maneuver on the ground. By analyzing structure of the simulator, three coordinates are defined. Then the orbital model and attitude model are constructed based on spacecraft attitude dynamics. Because the actuator of the simulator is a cold gas propulsion system, a state equation is derived at last according to actual situation, and this state equation is the foundation of the further research on the simulator.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第1期60-64,共5页 Journal of Astronautics
关键词 航天器仿真 气浮轴承 动力学模型 推进系统 状态方程 Spacecraft simulation Air bearing Dynamic model Propulsion system State equation
  • 相关文献

参考文献7

  • 1孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 2Regehr Martin W, Acikmese Ahmet B, Ahmed, et al. The formation control testbed [ C ]//2004 IEEE Aerospace Conference Proceedings, Big Sky, MT, United States, 2004: 557- 563.
  • 3Ledebuhr A G, Ng L C. Plumesat: a nficro-satellite based plume imagery collection experiment[C]//Annual American Institute of Aeronautics and Astronautics/Missile Defense Agency Technology Conference and Exhibit, Monterey, CA, 2002: 1- 14.
  • 4Schwartz Jana L, Peck Mason A, Hall Christopher D. Historical review of spacecraft simulator[ J]. Advances in the Astronautical Sciences, 2003, 114: 405-423.
  • 5李季苏,牟小刚,孙维德,杨天安,李通生.大型卫星三轴气浮台全物理仿真系统[J].控制工程(北京),2001(3):22-26. 被引量:16
  • 6XU Jian, BAO Gang, YANG Qingjun, et al. Design and development of a 5 - dof air-bearing spacecraft simulator[ C]//2009 International Asia Conference an Informatics in Control, Automation and Robotics, Bangkok, 2009: 126- 130.
  • 7Greenwood Donald T. Advanced Dynamics[ M]. Cambridge University Press, 2003,.

二级参考文献9

  • 1刘慎钊.卫星控制系统仿真[J].系统仿真学报,1995,7(2):19-25. 被引量:10
  • 2CHEN G R,LAI D.Feed black anti-control of discrete chaos[J].Int.J.Bifur.Chaos,1998(7):1585-1590
  • 3Yang Z,LIU Y Z,CHEN G R.Chaotifying a continous-time system via impulsive input[J].Int.J.Bifur.Chaos,2002,12(5):1121-1128]
  • 4WANG X F,CHEN G R,YU X.Anti-control of chaos in continous-time systems via time-delay feedback[J].Chaos,2000,10(4):771-779
  • 5Beletsky V V,Pivovarov M L,Starostin E L.Regular and chaotic motions in applied dynamics of a rigid body,Chaos,1996,6(2):155-166
  • 6CHEN L Q,LIU Y Z.Chaotic attitude motion of a magnetic rigid spacecraft and its control[J].International Journal of Nonlinear Mechanics,2002,37(3):493-504
  • 7Alban P M Tsui,Antonia J Jones.The control of higher dimensional chaos:comparative results for the chaotic satellite attitude control problem,Physica D,2000,135:41-62
  • 8KUANG J L,Meehan P A,Leung A Y T.Suppressing chaos via Lyapunov Krasovskii's method.Chaos,Solitons and Fractals,2006,27:1408-1414
  • 9Dracopoulos D C,Jones A J.Adaptive neuro-genetic control of chaos applied to the attitude control problem,Neural Comp.Appl,1997,6(2):102-115

共引文献24

同被引文献86

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部