期刊文献+

高光谱图像全局异常检测RFS-SVDD算法 被引量:10

A RFS-SVDD Algorithm for Hyperspectral Global Anomaly Detection
下载PDF
导出
摘要 针对SVDD用于高光谱图像全局异常检测时存在虚警率高的问题,提出RFS-SVDD算法。RFS-SVDD将空间相邻且光谱相似的像元分为同一区域,根据区域大小将图像在空间上分成潜在异常区域与背景区域,用背景区域中所有子区域的平均光谱RFS作为SVDD训练样本求取支持向量。RFS是每个子区域中像元光谱的统计结果且不包含奇异像元,可以避免奇异像元光谱和图像随机噪声对背景建模的影响。对HYMAP和AVIRIS图像数据的仿真结果表明:RFS-SVDD算法能抑制异常目标像元光谱和图像随机噪声对背景建模的干扰,降低SVDD用于高光谱图像全局异常检测的虚警率。 A RFS-SVDD algorithm was presented in order to decrease false-alarm rate when the SVDD detector is used for global anomaly detection in hyperspectral imagery. The original hyperspectral imagery was divided into some sub-regions by an improved spatial clustering algorithm proposed in this paper. Those sub-regions larger than the target size were defined as background sub-regions, and others were defined as potential anomaly sub-regions. The average spectrum of all the pixels in each background sub-region, which is called Region Feature Spectrum (RFS), was computed and used as training sample for SVDD. Those training samples were used to model the support region of the background spectrum. Because the RFS is the average spectrum of the back- ground sub-region which contains no anomalous pixel, the modeling would not be affected by the anomalous spectrums and random noise in the hyperspectral imagery'. The simulated results on the HYMAP and AVIRIS data show that the RFS-SVDD can eliminate the interference induced by the anomalous spectrum and/or random noise, and finally decreases the false-alarm rate when SVDD is used for global anomaly detection in hyperspectral imagery.
出处 《宇航学报》 EI CAS CSCD 北大核心 2010年第1期228-232,共5页 Journal of Astronautics
基金 省部级项目(C2220061046) 北京理工大学校基础科研(20070242005)
关键词 高光谱图像 全局异常检测 SVDD 空间聚类 Hyperspectral imagery Global anomaly detection SVDD Spatial clustering
  • 相关文献

参考文献16

  • 1Reed I S, X Yu. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans. On Acoustic Speech and Signal Process, 1990, 38 ( 10 ) : 1760 - 1770.
  • 2Alan M Thomas. Extending the RX anomaly detection algorithm to continuous spectral and spatial domains [ J ]. Southeast on 2008 IEEE : 557 - 562.
  • 3Harsanyi J C. Detection and classification of subpixel spectral signatures in hyperspectral image sequences[ D ]. Ph. D. Dissertation, Department of Electrical Engineering, University of Maryland Baltimore County, Baltimore, 1993.
  • 4张立燕,谌德荣,陶鹏.基于顶点成分分析的高光谱图像低概率异常检测方法研究[J].宇航学报,2007,28(5):1262-1265. 被引量:10
  • 5Chiang S S, Chang C I, Ginsberg I W. Unsupervised target detection in hyperspectral images using projection pursuit [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39 (7): 1380- 1391.
  • 6Banerjee A, Burlina P, Diehl C. Support vector methods for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8) : 2282 - 2291.
  • 7谌德荣,张立燕,陶鹏,曹旭平.结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法[J].宇航学报,2007,28(3):767-771. 被引量:6
  • 8谌德荣,宫久路,陈乾,曹旭平.基于样本分割的快速高光谱图像异常检测支持向量数据描述方法[J].兵工学报,2008,29(9):1049-1053. 被引量:6
  • 9Banerjee A, Burlina P, Reuven Meth. Fast hyperspectral anomaly detection via SVDD[ J]. Proceedings 2007 IEEE International Conference on Image Processing, 2007(4) : IV 101 - IV - 104.
  • 10Renven Meth, Amit Banerjee, Philippe Burlina, Thomas Strat. Rapid high performance hyperspectral anomaly detection via global support vector data description[ J]. SPIE, 2008, 6967: 69670A - 1 -69670A - 11.

二级参考文献15

  • 1谌德荣,张立燕,陶鹏,曹旭平.结合邻域聚类分割的高光谱图像异常检测支持向量数据描述方法[J].宇航学报,2007,28(3):767-771. 被引量:6
  • 2郭洪周,房晓钟,张宗贵,甘甫平.澳大利亚机载成像光谱仪及其应用[J].地质装备,2005,6(2):31-33. 被引量:6
  • 3[1]Reed I S,X Yu.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Trans.On Acoustic Speech and Signal Process,1990,38(10):1760-1770
  • 4[2]Harsanyi J C.Detection and classification of subpixel spectral signatures in hyperspectral image sequences[D].Ph.D.Dissertation,Department of Electrical Engineering,University of Maryland Baltimore County,Baltimore,1993
  • 5[3]Amit Banerjee.A support vector method for anomaly detection in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8)
  • 6[6]Tax D M J and Duin R P W.Data domain description using support vectors.Proc.Eur.Symp.Artif.Neural Netw,M.Vefleysen,Ed,Brussels,Belgium,Apr.1999,251-256
  • 7[2]Reed I S,X Yu.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Trans.On Acoustic Speech and Signal Process.1990,38(10):1760-1770
  • 8[3]Harsanyi J C.Detection and classification of subpixel spectral signatures in Lyperspectral image sequences[D].Ph.D.Dissertation,Department of Electrical Engineering,University of Maryland Baltimore County,Baltimore,1993
  • 9[5]Jose M P,Nascimento,Jose M,Bioucas Dias.Vertex component analysis:A fast algorithm to unmix hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):898 -910
  • 10[6]http://aviris.jpl.nasa.gov/

共引文献25

同被引文献198

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部