期刊文献+

关于短区间中模q的整数及其逆的分布 被引量:4

On the distribution of integers and their inverses modulo q in a short interval
下载PDF
导出
摘要 利用初等方法和解析方法研究了短区间中模q的整数逆的分布性质,建立了短区间中模q的整数逆与Kloosterman和之间的关系,利用Kloosterman和的估计与三角和的性质给出几个较强的渐近公式,所得结果表明该类和式具有较好的分布性质. By using elementary and analytic methods, the distributive properties of integers and their inverses modulo q in a short interval are discussed. A relationship between inverses modulo q in short interval and Kloosterman sums is established. By using the estimates for Kloosterman sums and properties of trigonometric sums, some sharp asymptotic formulas are given. The results obtained in this paper show that this kind of sums has good distributive properties.
机构地区 西北大学数学系
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期11-14,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省自然科学基础研究计划项目(2009JM1006)
关键词 整数 整数逆 分布 短区间 渐近公式 integer inverse of an integer distribution short interval asymptotic formula
  • 相关文献

参考文献6

  • 1Guy R K. Unsolved problems in number theory [M]. New York : Springer-Verlag, 1981 : 139-140.
  • 2Zhang Wenpeng. On the difference between an integer and its inverse modulo n [ J ]. Journal of Number Theory, 1995, 52:1-6.
  • 3Zhang Wenpeng. On the difference between a D. H. Lehmer number and its inverse modulo q [J]. Acta Arithmetica, 1994, 68:255-263.
  • 4Zhang Wenpeng. Some estimates of trigonometric sums and their applications[J]. Acta Mathematica Hungarica, 1997,76:17-30.
  • 5Apostol T M. Introduction to analytic number theory [M].New York : Springer-Verlag, 1976: 162.
  • 6Estermann T. On Kloosterman's sums[J]. Mathematika,1961, 8:83-86.

同被引文献12

  • 1张文鹏.On the difference between an integer and its inverse modulo n(II)[J].Science China Mathematics,2003,46(2):229-238. 被引量:5
  • 2张文鹏.ON THE D.H.LEHMER PROBLEM[J].Chinese Science Bulletin,1992,37(21):1765-1769. 被引量:2
  • 3尤琦英.关于D.H.Lehmer问题的一个推广[J].纺织高校基础科学学报,2005,18(1):39-42. 被引量:2
  • 4BORISLAV Crstiei. Handbook of number theory I[M]. Berlin: Springer, 2006.
  • 5L Gegenbauer. Asymptotisehe gesetze der zahlentheorie[J]. Denksehriften Akad Wien, 1885,49 (1) :37-80.
  • 6J Briidern,A Granville,A Perelli,et al. On the exponential sum over k-free numbers[J]. Philos Trans Roy Soc London Ser A,1998,356:739-761.
  • 7华罗庚.数论导引[M].北京:科学出版社,2008:173-176.
  • 8T Estermann. On Kloostermann's sum[J]. Mathematiea,1961(8):83-86.
  • 9徐哲峰. Distribution of the difference of an integer and its m-th power mod n over incomplete intervals[J]. Joursal of Number Theory, 2013,133 (12):4200-4223.
  • 10张文鹏. On the difference between an integer and its inverse Modulo n* [J]. Joursal of Number Theory, 1995,52(1) : 1-6.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部