期刊文献+

Cu纳米线弛豫结构和电子性质 被引量:3

The relaxed structures and electronic properties of Cu nanowire
下载PDF
导出
摘要 在广义梯度近似下,利用密度泛函理论框架下的第一原理投影缀加波赝势方法,研究了横截面为3×3、5×5、7×7、9×9和11×11原子层Cu纳米线的弛豫结构和电子性质.结果表明,5种尺寸纳米线的弛豫结构仍然有四重对称性.纳米线表面外近邻原子的消失一方面使表面原子间以及表面原子与它们的第一近邻原子间的相互作用增强,另一方面使表面原子的大多数电子位于占据态的高能量区域. Under the Gradient Approximation (GGA), the relaxed structures and electronic properties have been investigated for Cu nanowires with cross-sections of 3 × 3.5 × 5.7 × 7.9 × 9 and 11× 11 atom layers by using the first-principles Projector Augmented Wave (PAW) potential within Density Function Theory (DFT) . For all the five-size nanowires, the relaxed structures still have four-fold symmetry. The vanishing of the neighbor atoms outside nanowire not only causes an enhance interactions between the surface atoms as well as the surface atoms and their first nearest neighbor atoms, but also drives the most electrons of the surface atoms to range in the higher energy region of the occupancy states.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期32-36,共5页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家重点基础研究发展计划资助项目(973)(2004CB619302)
关键词 Cu纳米线 弛豫 电子性质 第一原理 Cu nanowires relaxation electronic property first-principle
  • 相关文献

参考文献31

  • 1Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods andnanotubes[J]. Science, 1997, 277 (5334):1 971- 1 975.
  • 2Hasmy A, Medina E. Thickness induced structural transition in suspended fcc metal nanofilms[J]. Physical Review Letters, 2002, 88(9):096103(4).
  • 3Landman U, Luedtke W D, Salisbury B E, et al. Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions [J]. Physical Review Letters, 1996, 77 (7): 1 362- 1 365.
  • 4Kondo Y, Takayanagi K. Gold nanobridge stabilized by surface structure[J]. Physical Review Letters, 1997, 79 (18) :3 455-3 458.
  • 5Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires[J]. Science, 2000, 289 (5479) : 606-608.
  • 6Da Silva E Z, Da Silva A J R, Fazzio A. How do gold nanowires break[J]. Physical Review Letters, 2001, 87 (25):256102(4).
  • 7Wu B, Heidelberg A, Boland J J. Mechanical properties of ultrahigh-strength gold nanowires[J ]. Nature Materials, 2005(4) :525-529.
  • 8Park H S, Zimmerman J A. Stable nanobridge formation in [ 110 ] gold nanowires under tensile deformation [ J ]. Scripta Materialia, 2006, 54(6):1 127-1 132.
  • 9Rabkin E, Nam H S, Srolovitz D J. Atomistic simulation of the deformation of gold nanopillars[J]. Acta Materialia, 2007, 55(6) :2 085-2 099.
  • 10Hakkinen H, Manninen M. Force fluctuations and localized states at point contacts[J]. Europhysics Letters, 1998, 44(1) :80-84.

同被引文献33

  • 1Cui Yi, Wei Qingqiao, Park Hongkun, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533) : 1289-1292.
  • 2Beeklllan R, Johnston E H, Luo Y, et al. Bridging di-mensions: demultiplexing ultrahigh-density nanowire circuits[J]. Science, 2005, 310(5747): 465-468.
  • 3Huang Yu, Duan Xiangfeng, Wei Qingqiao, et al. Di- rected assembly of one-dimensional nanostructures into functional networks [J]. Science, 2001, 291 (5504) 630-633.
  • 4Melosh N A, Boukai A, Diana F, et al. Ultrahigh-den- sity nanowire lattices and circuits [J]. Science, 2003, 300(5616) : 112-115.
  • 5Duan Xiangfeng Huang Yu, Cui Yi, et al. Indium phosphide nanowires as building blocks for nanoscale e- lectronic and optoelectronic devices [J]. Nature, 2003, 409: 66-69.
  • 6Cleland A N, Roukes M L. A nanometre-scale mechani- cal electrometer[J]. Nature, 1998, 392: 160-163.
  • 7Cornelius T W, BrOtz J, Chtanko N, et al. Controlled fabrication of poly- and single-crystalline bismuth nanowires[J]. Nanotechnology,2005,16(5) .. $246-$249.
  • 8Karim S, Toimil-Molares M E, Balogh A G, et al. Morphological evolution of Au nanowires controlled by Rayleigh instability [J]. Nanotechnology, 2006, 17 (24) : 5954-5959.
  • 9Rubio-Bollinger G, Bahn S R, Agrait N, et al. Mechan- ical properties and formation mechanisms of a wire of single gold atoms[J]. Physical Review Letters, 2001, 87(2) : 026101.
  • 10Gonzdlez J C, Rodrigues V, Bettini J, et al. Indication of unusual pentagonal structures in atomic-size Cu nanowires[J]. Physical Review Letters, 2004, 93 (12) : 126103.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部