期刊文献+

气辅注射成型运动界面的Level Set方法数值模拟 被引量:1

Numerical simulation of moving interfaces in gas-assisted injection molding process by Level Set approach
下载PDF
导出
摘要 给出气液两相流数学模型,选取Cross-WLF模型作为熔体的黏度模型,采用Level Set/SIMPLEC方法模拟了气体辅助注射成型中气体穿透过程,追踪到了不同时刻的运动界面(气熔界面和熔体前沿界面),描述了运动过程中不同时刻速度和温度等重要物理量的分布情况,分析了熔体温度、气体延迟时间和注射压力对气体穿透时间和穿透长度的影响。数值结果表明,Level Set/SIMPLEC方法可以准确追踪气体穿透过程中的两个运动界面;熔体温度、延迟时间和气体注射压力对气体穿透长度有显著影响。 The mathematical models of gas-liquid two-phase flow were presented, and the Cross-WLF model was selected as the viscosity model of the melt. The gas penetration process was simulated by using the Level Set/SIMPLEC methods, which could capture the moving interfaces at different times, including the gas-melt interface and the front of the melt. The physical features, such as velocity and temperature at different times were described. The influences of melt temperature, gas delay time and injection pressure on gas penetration time and penetration length were analyzed. The numerical results showed that the Level Set/SIMPLEC methods could precisely trace the two moving interfaces in the gas penetration process and the penetration length was affected significantly by melt temperature, gas delay time and injection pressure.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第2期302-309,共8页 CIESC Journal
基金 国家自然科学基金重大项目(10590353 10871159) 国家重点基础研究发展计划项目(2005CB321704)~~
关键词 气辅 两相流 LEVEL SET 界面 gas-assisted two-phase flow Level Set interface
  • 相关文献

参考文献15

  • 1Jack Avery. Gas-Assist Injection Molding Principles and Applications. Beijing: Chemical Industry Press, 2003: 1-196.
  • 2郑素佩,欧阳洁,张红平,张玲.带有矩形嵌件薄壁型腔内熔接过程动态模拟[J].化工学报,2008,59(1):232-238. 被引量:6
  • 3孙懋,周国发,张效迅,庞明军.气辅共注成型充模流动过程全三维数值模拟[J].中国塑料,2003,17(10):86-91. 被引量:7
  • 4Zheng Guoqiang (郑国强). The morphology, structure and properties of the parts molded by gas assisted injection molding[D]. Chengdu: Siehuan University, 2007.
  • 5Anley Osher, Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Berlin: Springer, 2003:1-273.
  • 6Sussman M, Smereka P, Osher S. A Level Set approach to computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114:146-159.
  • 7LiuRuxun(刘儒勋),WangZhifeng(王志峰).The Numerical Method and the Tracking of the Moving Surface(数值模拟方法和运动界面追踪).Hefei:University of Science and Technology of China Press,2001:196-200.
  • 8Sethian J A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge: Cambridge University Press, 1999:1-95.
  • 9Song Daoyun(宋道云).The algorithm of collocated-grid finite volume method and its application of numerical simulation in a contraction flow for viscoelastic fluids [D]. Shanghai: East China University of Science and Technology, 2002.
  • 10Tao Wenquan(陶文铨).Numerical Heat Transfer(数值传热学).2nd ed. Xi'an.. Xi'an Jiaotong University Press,2004:1-249.

二级参考文献31

  • 1申长雨,王利霞,李倩,陈静波,刘春太.注塑成型充填过程的可压缩流动分析[J].化工学报,2006,57(7):1537-1542. 被引量:3
  • 2郑素佩,欧阳洁,赵智峰,张红平.熔体充模过程动态模拟及流场分析[J].中国塑料,2007,21(5):53-57. 被引量:2
  • 3.C-Mold参考手册:第二章[M].,..
  • 4Hieber C A, Shen S F. Simulation of polymeric flows in the gas-assisted injection molding process. J Non-Newtonian Fluid Mech, 1980,12(7):1-6
  • 5Yean-der Kuan,A. Sherif El-Gizawy. Numerical Characterization of Mold Injction in Resin Transfer Molding Process[J]. Advance in Polymer Technokgy ,2000,19(3) : 173- 179.
  • 6R V Mohan, N D Ngo, K K Tamma. On A Pure Finite-Element-Based Methodology for Resin Transfer Mold Filling Simulations [J ]. Polymer Engineering and science,1999,39(1) : 173- 179.
  • 7Tayfun E. Tezduyar, Shahrouz Alizbadi. EDICT for 3D Computation of Two-Fluid Interfaces. Comput[J ]. Methods Appl Eng , 1988,155:235-248.
  • 8Dartzi Pan, Chih-Hao Chang. The Capuazing of Free Surfaces in Incompressible Multi-fluid Flows [ J ]. International Journal for Numerical Methods in Fluids,2000,33:203-222.
  • 9M P Reddy, J N Reddy. Penalty Finite Element Analysis of Incompressible Flows Using Element by Element Solution[J]. Computer Methods in Applied Mechanics and Engineering, 1992,100 : 169-205.
  • 10J N Reddy. Penalty-Finite-Element Analysis of 3D Navier-Stokes Equations[J]. Computer Methods in Applied Mechanics and Engineering, 1982,35: 87 - 106.

共引文献20

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部