期刊文献+

常利率下带干扰负风险和模型的破产概率 被引量:2

Ruin Probability for the Risk Model with Negative Risk Sums Perturbed by Diffusion under Constant Interest Force
原文传递
导出
摘要 本文考虑了常利率下带干扰负风险和模型的破产模型,给出了积分和积分-微分方程,并当理赔量为指数分布时给出了破产概率的具体表达式. In this paper, we consider the risk process with negative risk sums perturbed by diffusion under constant interest force. Integral equations and integro-differential equations for the probability of ruin for the proposed model are derived. We give the the explicit expression for the probability of ruin when the Zk^1s are exponential distributions.
出处 《应用数学学报》 CSCD 北大核心 2010年第1期88-94,共7页 Acta Mathematicae Applicatae Sinica
基金 江苏省自然科学基金(KB2008155) 江苏省普通高校研究生科研创新计划(CX09B-017Z) 苏州科技学院院基金资助项目
关键词 负风险和 积分和积分-微分方程 破产概率 negative risk sums integral and integro-differential equation: ruin probability
  • 相关文献

参考文献8

  • 1Grandell J. Aspects of Risk Theory. New York: Springer-Verlag, 1991.
  • 2Avanzi B, Gerber HU, Shiu ESW. Optimal dividends in the dual model. Insurance Mathematics and Economics 2007, 41:111-123.
  • 3Gerber H U, Shiu E S W. Pricing Perpetual Options for Jump Processes. North American Actuarial Journal, 1998, 2(3): 101-112.
  • 4Wang Yujie, Wang Guojing. Ruin Probability for the Risk Model with Negative Risk Sums Perturbed by Diffusion. Appl. Math. J. Chinese Univ. (Series A), 2004, 19(4): 431-435.
  • 5Revuz D, Yor M. Continuous Martingales and Brownian Motion. Berlin: Springer, 1991.
  • 6Wang Guojing. A Decomposition of the Ruin Probability for the Risk Process Perturbed by Diffusion. Insurance: Mathematics and Economics, 2001, 28:49-59.
  • 7Wang Guojing, Wu Rong. Some Distributions for Classical Risk Process that is Perturbed by Diffusion. Insurance: Mathematics and Economics, 2000, 26:15-24.
  • 8Slater L J. Confluent Hypergeometric Functions. London: Cambridge University Press, 1960.

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部