期刊文献+

一类带有变号二阶四点奇异边值问题的正解 被引量:3

Positive Solution for a Class of Singular Second-order Four-point Boundary Value Problem with Sign Changing Nonlinearity
原文传递
导出
摘要 本文研究了一类带有变号二阶四点奇异边值问题的正解的存在性,首先我们给出其格林函数,其次我们结合下解的方法和拓扑度理论得到了其正解的存在性.最后给出一个例题阐述得到结果的正确性.本文的结果是新的,并且扩展了已有的结果. In this paper, by using the method of lower solution and topology degree theorem, we study the existence of positive solution for a class of singular second-order four-point boundary value problem with sign changing nonlinearity. The associated Green's function for the above problem is given. As an application, we also give an example to demonstrate our result. The results of this paper are new and extend previously known results.
出处 《应用数学学报》 CSCD 北大核心 2010年第1期171-180,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10771212) 江苏省自然科学基金(06KJB110010)资助项目
关键词 格林函数 正解 四点边值问题 奇异 变号 green's function positive solution four-point boundary value problem singular sign changing nonlinearity
  • 相关文献

参考文献8

  • 1Liu B, Liu L, Wu Y. Positive Solutions for Singular Second order Three-point Boundary Value Problems. Nonlinear Anal., 2007, 66:2756 2766.
  • 2Liu B. Positive Solutions of a Nonlinear Three-point Boundary Value Problem. Appl. Math. Comput., 2002, 132:11-28.
  • 3An Y. Existence of Solutions for a Three-point Boundary Value Problem at Resonance. Nonlinear Anal., 2006, 65:1633-1643.
  • 4Greaf J, Yang B. Positive Solutions to a Multi-point Higher order Boundary Value Problem. J. Math. Anal. Appl., 2006, 316:409-421.
  • 5Liu Y, Li D, Fang M. Solvability for Second-order m-point Boundary Value Problems at Resonance on the Half-line. Electron. J. Diff. Eqns., 2009, 13:1-11.
  • 6Bai C Z, Xie D P, Liu Y, Wang C I. Positive Solutions for Second-order Four-point Boundary Value Problems with Alternating Coefficient. Nonlinear Analysis, 2009, 70:2014-2023.
  • 7Xie D P , Liu Y, Bai C Z. Triple Positive Solutions for Second-order Four-point Boundary Value Problem with Sign Changing Nonlinearities. Electronic Journal of Qualitative Theory of Differential Equations, 2009, 35:1-14.
  • 8Liang R, Peng J, Shen J. Positive Solutions to a Generalized Second order Three-point Boundary Value Problem. Appl. Math. Comput., 2008, 196:931-940.

同被引文献14

  • 1Jing-li Ren,Wei-gao Ge,Bao-xian Ren.Existence of Three Positive Solutions for Quasi-linear Boundary Value Problem[J].Acta Mathematicae Applicatae Sinica,2005,21(3):353-358. 被引量:4
  • 2苏新卫,穆晓霞.非线性分数阶微分方程系统正解的存在性和唯一性[J].河南师范大学学报(自然科学版),2006,34(4):9-12. 被引量:8
  • 3刘式达,时少英,刘式适,梁福明.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19. 被引量:15
  • 4郭大钧,黄春朝,梁方豪,等.实变函数与泛函分析[M].济南:山东大学出版社,2008:281-282.
  • 5Greaf J,Yang B.Positive Solusions to a multi-point higher order boundary vablue problem.J Math Anal Apple,2006;316:409-421.
  • 6Chu J F,Lin X N,Jiang D Q ,et al. Agarwal, Positive Solutions for Second-order Superlinear Repulsive Singular Neumann Boundary Value Problems[ J]. Positivity ,2008,12:555 - 569.
  • 7Yuan C J, Jiang D Q,O' Regan D. Existence and Uniqueness of Positive Solutions for Fourth-order Nonlinear Singular Continuous and Discrete Boundary Value Problems[J]. Applied Mathematics and Computation,2008,203:194 -201.
  • 8Bai Z B. Positive Solutions of Some Nonlocal Fourth-order Boundary Value Problem [ J]. Applied Mathematics and Computation ,2010,215:4191 - 4197.
  • 9辛怡,白雪霏,李勤.分数阶傅里叶联合变换相关在指纹识别中的应用[C]//中国仪器仪表学会医疗仪器分会2010两岸四地生物医学工程学术年会论文集.2010.
  • 10Zhang S Q. Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations [ J ]. Electronic Journal of Differential Equations ,2006,23 : 1 - 12.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部