期刊文献+

金属和Kerr非线性介质界面上表面等离子体激元的色散关系 被引量:5

The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface
原文传递
导出
摘要 从麦克斯韦方程组出发,结合边界条件,分别得到TM波和TE波在金属和Kerr非线性介质界面上表面等离子体激元的色散关系.由于非线性的存在,TM波的色散关系变得复杂,与光强、非线性系数有关.和线性情况一样,此界面不存在TE波. The dispersion relation of transverse magnetic(TM) wave and transverse electric(TE) wave for surface plasmon at a metal-Kerr nonlinear medium interface are analyzed based on the Maxwell equations and the boundary conditions. The dispersion relation of TM wave is complex, due to the nonlinearity, and it has a dielectric coefficient and intensity-dependent expression. However, the TE wave does not exist at this interface as in the linear case.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2010年第2期1180-1184,共5页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2010CB923202)资助的课题~~
关键词 Kerr非线性介质 金属 表面等离子体激元 色散关系 Kerr nonlinear medium metal surface plasmon dispersion relation
  • 相关文献

参考文献1

二级参考文献13

  • 1Ebbesen T W, Lezec H J, Ghaerni H F, Thio T, Wolff P A 1998 Nature (London) 391 667
  • 2Ghaerni H F, Thio T, Grupp D E, Ebbesen T W, Lezec H J 1998 Phys. Rev. B 58 6779
  • 3Schroter U, Heitmann D 1998 Phys. Rev. B 58 15419
  • 4Porto J A, Garcia-Vidal F T, Pendry J B 1999 Phys. Rev. Lett. 83 2845
  • 5Treacy M M J 1999 Appl. Phys. Lett. 75 606
  • 6Popov E, Neviere M, Enoch S, Reinisch R 2000 Phys. Rev. B 62 16100
  • 7Takakura Y 2001 Phys. Rev. Lett. 86 5601
  • 8Yang F Z, Sambles J R 2002 Phys. Rev. Lett. 89 63901
  • 9Qu D X, Grischkowsky D, Zhang W L 2004 Opt. Lett .29 896
  • 10Cao H, Nahata A 2004 Opt. Express 12 1004

共引文献8

同被引文献27

  • 1董启明,郭小伟.表面等离子体无掩膜干涉光刻系统的数值分析(英文)[J].光子学报,2012,41(5):558-564. 被引量:5
  • 2BARNES W L, DEREUX A, EBBESEN T W.Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830.
  • 3OZBAY E. Plasmonics:Merging photonics and electronics atnanoscale dimensions[J]. Science, 2006, 311(5758):189-193.
  • 4MARIE S A. Plasmonics:The promise of highly integrated optical devices[J]. IEEE Journal of Selected Topics Quantum Electronics, 2007, 12(6):1671-1677.
  • 5IVAN D R, MALIN P. Optimization of nonlinear performance of silicon-nanocrystal cylindrical nanowires[J]. IEEE Photonics Journal,2012, 4(3):952-959.
  • 6IVAN D R, MALIN P, GOVIND P A. Effective mode area and its optimization in silicon-nanocrystal waveguides[J]. Optics Letters, 2012, 32(12):2295-2297.
  • 7TANAKA K, TANAKA M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J]. Applied Physics Letters, 2003, 82(8):1158-1160.
  • 8KUSUNOKI F, YOTSUYA T, TAKAHARA J, et al. Propagation properties of guided waves in index-guided two-dimensional optical waveguides[J]. Applied Physics Letters, 2005, 86(21):211101.
  • 9BIAN Y S, ZHENG Z, ZHAO X, et al. Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm[J]. IEEE Journal of selected Topics Quantum Electron, 2013, 19(3):4800106.
  • 10PILE D F P, GRAMOTNEV D K. Channel plasmon-polariton in a triangular groove on a metal surface[J]. Optics Letters, 2004, 29(10):1069-1071.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部