摘要
Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo doping, which implies that Mo ions do enter into the lattice of SnO2 nanowire. Ultraviolet-visible diffuse reflectance spectra show that the band gap of MTO nanowires decreases with the increase of Mo concentration. The photoluminescence emission of SnO2 nanowires around 580~nm at room temperature can also be controlled accurately by Mo-doping, and it is extremely sensitive to Mo ions and will disappear when the atomic ratio reaches 0.46%.
Mo-doped SnO2 (MTO) nanowires are synthesized by an in-situ doping chemical vapour deposition method. Raman scattering spectra indicate that the lattice symmetry of MTO nanowires lowers with the increase of Mo doping, which implies that Mo ions do enter into the lattice of SnO2 nanowire. Ultraviolet-visible diffuse reflectance spectra show that the band gap of MTO nanowires decreases with the increase of Mo concentration. The photoluminescence emission of SnO2 nanowires around 580~nm at room temperature can also be controlled accurately by Mo-doping, and it is extremely sensitive to Mo ions and will disappear when the atomic ratio reaches 0.46%.
基金
supported by the Major Research Plan of National Natural Science Foundation of China (Grant No. 90606010)
the Program for New Century Excellent Talents in University, China (Grant No. NCET-07-0278)
the Hunan Provincial Natural Science Fund, China (Grant No. 08JJ1001)
the Scientific Research Fund of Hunan Normal University, China (Grant No. 070623)