摘要
By using the molecular dynamic simulation method with a fourth-order Runge--Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel--Kontorova (FK) model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the average velocity and the static friction force have been studied. It is found that not only the amplitude and frequency of ac-driven force, but also the direction of the external driving force and the misfit angle between two layers have some strong influences on the static friction force. It can be concluded that the superlubricity phenomenon appears easily with a larger ac amplitude and lower ac frequency for some special direction of the external force and misfit angle.
By using the molecular dynamic simulation method with a fourth-order Runge--Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel--Kontorova (FK) model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the average velocity and the static friction force have been studied. It is found that not only the amplitude and frequency of ac-driven force, but also the direction of the external driving force and the misfit angle between two layers have some strong influences on the static friction force. It can be concluded that the superlubricity phenomenon appears easily with a larger ac amplitude and lower ac frequency for some special direction of the external force and misfit angle.
基金
supported by the National Natural Science Foundation of China (Grand Nos. 50575217, 10875098 and 50421502)
the Natural Science Foundation of Northwest Normal University (Grant Nos. NWNU-KJCXGC-03-17 and NWNU-KJCXGC-03-48)