期刊文献+

海上运动目标跟踪系统的设计 被引量:1

Design of tracking system for marine moving object
下载PDF
导出
摘要 为实现对海上运动目标的实时跟踪,克服跟踪效果易受到严重遮挡影响的缺点,建立了一套实时跟踪系统,并且结合目标的运动信息与新的模型更新策略,对均值漂移与卡尔曼滤波器相结合的跟踪算法做出了改进。当运动船只被遮挡的比例较大时,先用估计出的目标速度矢量更新卡尔曼滤波器,并用相应的模型更新策略更新目标模型以提高模型相似性度量的精确性,再单独利用滤波器进行跟踪,取得了较好的跟踪效果。实验结果表明,该系统可以较好地实现海上运动目标的跟踪,并且改进后的算法具有良好的实时性和鲁棒性。 To accomplish the real-time tracking for the marine moving object and overcome the defect of the susceptibility to severe occlusion, a set of real-time tracking system for the moving object at sea is designed. In virtue of the motion information and a new kind of model update strategy, some improvements are made for tracking algorithm combining the mean-shift with Kalman filter. When the moving vessel is largely blocked, Kalman filter is updated by the prior estimated velocity vector, and the accuracy of model similarity measurement is improved by utilizing the model update strategy, then the filter is exploited to implement tracking. The algorithm achieved good tracking effect. Experimental results show that the system implement marine moving object tracking with good real-time performance and robustness.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第2期439-442,共4页 Computer Engineering and Design
关键词 均值漂移 卡尔曼滤波 跟踪系统 海上运动目标 模型更新 mean-shift Kalman filter tracking system marine moving object model update
  • 相关文献

参考文献8

二级参考文献37

  • 1施华,李翠华.视频图像中的运动目标跟踪[J].计算机工程与应用,2005,41(10):56-58. 被引量:11
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 4姚红革,耿军雪.基于卡尔曼预测的视频目标实时跟踪[J].西安工业大学学报,2007,27(2):171-175. 被引量:13
  • 5BLACK M J, FLEET D J. Probabilistic detection and tracking of motion discontinuities[C]//Proc. IEEE International Conference on Computer Vision.Greece,Corfu:IEEE Press, 1999:551-558.
  • 6HAI Tao, SAWHNEY H S, KUMAR R. Object tracking with bayesian estimation of dynamic layer representations [J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002,24(1 ):75-89.
  • 7ISARD M, BLAKE A. Icondensation: unifying low-level and high- level tracking in a stochastic framework [C]//Proc. IEEE Conference ECCV. Germany Berlin:Springer-Verlag Press, 1998:893-908.
  • 8HARIHARAKRISHNAN K, SCHONFELD D. Fast object tracking using adaptive block matching[J]. IEEE Trans. Multimedia, 2005, 7(5): 853-859.
  • 9[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 10[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.

共引文献250

同被引文献4

  • 1于仕琪,刘瑞祯.学习OpenCV(中文版)[M].北京:清华大学出版社,2009.
  • 2Katja Nummiaro,Esther Koller-Meier,Luc J.Van Gool:An adaptive color-based particle filter.Image Vision Computor.21(1):99-110,2003.
  • 3Bay H.Surf:Speeded up Robust Features[C]//Proc.of the 9th European Confon Computer Vision.[S.l.]:IEEE Press,2006.
  • 4何文媛,韩斌,徐之,宋敬海.基于粒子滤波和均值漂移的目标跟踪[J].计算机工程与应用,2008,44(11):61-64. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部