期刊文献+

预测状态表示综述

Survey of predictive state representations
下载PDF
导出
摘要 预测状态表示是描述离散时间有限状态的动态系统的新方法。使用动作—观测值序列的预测向量表示系统状态在将来时刻发生的概率,能解决现有动态系统决策过程中计算复杂的问题。综述了预测状态表示的基本原理,介绍了预测状态表示的建模过程和规划算法,对已有的建模方法和规划方法进行总结分析和比较,指出了该研究领域的发展方向,最后提出了研究面临的挑战。 Predictive state representations ( PSRs ) are new models for discrete-time finite action and observation stochastic systems. Because a PSR represents the system' s state as a set of predictions of the observable outcomes of tests performed in the system, it can solve the computing problems in exist stochastic decision systems. This paper introduced the principles of PSR models, surveyed the PSR model and planning techniques, analyzed and compared the fundamental principles behind the modeling and planning algorithms of PSR, pointed out the development trend, and gave the challenges that the research of PSR was facing.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期401-404,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60775046)
关键词 动态系统 预测状态表示 发现核心测试 学习模型参数 规划算法 stochastic systems predictive state representations(PSR) discovery core-test learning parameters planning
  • 相关文献

参考文献13

  • 1LITTMAN M, SUTTON R, SINGH S. Predictive representations of state[ C ]//Proc of the Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002 : 1555- 1561.
  • 2SINGH S, JAMES M, RUDARY M. Predictive state representations: a new theory for modeling dynamical systems [ C ]//Prec of the 20th Annum Conference on Uncertainty in Artificial Intelligence. 2004: 512-519.
  • 3SINGH S, LITTMAN M, JONG N. Learning predictive state representations [ C ]//Proc of the 20th International Conference on Machine learning. 2003:712-719.
  • 4JAMES M, SINGH S. Learning and discovery of predictive state representations in dynamical systems with reset[ C ]//Proc of the 21st International Conference on Machine Learning. 2004:53-60.
  • 5WOLFE B, JAMES M, SINGH S. Learning predictive state representations in dynamical systems without reset[ C]//Proc of ACM International Conference Proceeding Series. New York:ACM Press, 2005: 985- 992.
  • 6MeCRACKEN P, BOWLING M. Online discovery and learning of predictive state representations[ C ]//Proc of the Advances in Neural Information Processing Systems. 2006:875- 882.
  • 7JAMES M, SINGH S, LITrMAN M. Planning with predictive state representations[ C]//Proc of International Conference on Machine Learning and Applications. 2004:304-311.
  • 8ALBUS J S. A theory of cerebellar function[J]. Mathematical Biosciences, 1971, 10 (1-2) :25- 61.
  • 9SUTTON R, BARTO A. Reinforcement Learning: an introduction [M]. Cambridge:MIT Press, 1998.
  • 10JAMES M, WOLFE B, SINGH S. Combining the memory and landmarks with predictive state representations[ C]//Proc of the 19th International Joint Conference on Artificial Intelligence. 2005:734- 739.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部