期刊文献+

基于全局最小化活动轮廓的多目标检测跟踪 被引量:3

Multiple objects detecting and tracking based on global minimization of active contour model
下载PDF
导出
摘要 为了在噪声干扰以及目标和背景颜色相近情况下实现多目标跟踪,提出一种基于快速全局最小化的活动轮廓模型的目标检测跟踪算法。该算法结合了基于边缘的活动轮廓模型和基于区域的活动轮廓模型,对能量泛函进行全局最小化来检测目标活动轮廓,用卡尔曼滤波预测目标下一帧的特征信息,然后用改进的最近邻法进行多目标跟踪。对图像序列的实验结果表明该算法能有效地对运动背景下多目标进行跟踪。 This paper proposeded a multiple objects detecting and tracking algorithm, which was based on the fast global minimization of active contour model. The algorithm combined edge-based active contours model and region-based active contours into the framework of global minimization the energy functional to detect the objects contours. Predicted the features' information of the objects using the Kalman filter. Then tracked the multiple objects by using the improved nearest neighbor method. Experimental results demonstrate the efficiency of the proposed approach.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期794-797,共4页 Application Research of Computers
关键词 活动轮廓 全局最小化 多目标跟踪 最近邻法 active contour global minimization multiple objects tracking nearest neighbor method
  • 相关文献

参考文献11

  • 1裴继红,卢宗庆,谢维信.基于图像梯度场序列的双向GDIM光流计算方法[J].电子学报,2007,35(7):1301-1305. 被引量:3
  • 2王玉全,夏桂华,赵国良.一种自适应色彩融合的Mean-Shift跟踪算法[J].计算机应用研究,2008,25(9):2875-2877. 被引量:1
  • 3KASS M, WITKIN A, TERZOPOULOS D. Snakes : active contour models[ J]. I ntemational Journal of Computer Vision, 1988, 1(4): 321-331.
  • 4ISARD M, BLAKE A. CONDENSATION-conditional density propagation for visual tracking [ J ]. International Journal of Computer Vision, 1998,29( 1 ) : 5-28.
  • 5CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[J]. Intemational doumal of Computer Vision, 1997,22(1) :61-79.
  • 6OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on hamihon-jacobi formulations[J]. Journal of Computational Physics, 1988,79(1 ): 12-49.
  • 7CHANT F, VESE L A. Active contours without edges[J]. IEEE Trans on Image Processing, 2001,10(2): 266-277.
  • 8MANSOURI A R, KONRAD J. Multiple motion segmentation with level sets[J]. IEEE Trans on Image Processing, 2003,12(2): 201 - 220.
  • 9PARAGIOS N, DERICHE R. Geodesic active regions and level set methods for motion estimation and tracking [ J ]. Computer Vision and Image Understanding, 2005,97( 3 ) : 259-282.
  • 10BRESSON X, ESEDOGLU S, VANDERGHEYNST P, et al. Fast global minimization of the active contour/snake model [ J ]. Journal of Mathematical Imaging and Vision, 2007,28(2) :151-167.

二级参考文献29

  • 1贾静平,赵荣椿.使用Mean Shift进行自适应序列图像目标跟踪[J].计算机应用研究,2005,22(2):247-249. 被引量:5
  • 2文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 3M J Black,D J Fleet,Probabilistic detection and tracking of motion boundaries[J].International Journal of Computer Vision,2000,38(3):231-245.
  • 4K P Lim,A Das,M N Chong,Estimation of occlusion and dense motion fields in a bidirectional Bayesian framework[J].IEEE Trans Patter Anal Machine Intell,2002,24(5):712-718.
  • 5A Bab-Hadiashar,D Suter.Robust optical flow estimation[J].Int'l J Computer Vision,1998,29(1):59-77.
  • 6P Anandan.A computational framework and an algorithm for the measurement of visual motion[J].International Journal of Computer Vision,1989,2(3):283-310.
  • 7E Mémin,P Pérez.A multigrid approach for hierarchical motion estimation[A].Proc.Sixth International Conference on Computer Vision[C].Bombay,India,Narosa Publishing House,Jan 1998.933-938.
  • 8B Horn,B Schunck.Determining optical flow[J].Artificial Intelligence,1981,17(1):185-203.
  • 9L Alvarez,J Weickert,J Sánchez.Reliable estimation of dense optical flow fields with large displacements[J].International Journal of Computer Vision.2000,39(1):41-56.
  • 10F Lauze,P Kornprobst,E Mémim.A coarse to fine multiscale approach for linear least squares optical flow estimation[A].Electronic Proceedings of British Machine Vision Conference[C].London,Sept 2004.2.767-776.

共引文献2

同被引文献26

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 4Chan T F, Vese L. An Active Contours Model without Edges [ C ]//Int Conf Scale-Space Theories in Computer Vision. Berlin : Springer-Verlag, 1999 : 141-151.
  • 5马波.基于主动轮廓线模型的跟踪及初始化方法研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2003.
  • 6Bresson X, Esedoglu S. Fast Global Minimization of the Active Contour/Snake Model [ J ]. Journal of Mathematical Imaging and Vision, 2005,28(2) : 151-167.
  • 7Sundaramoorthi G, Soatto S. Curious Snakes: A Minimum Latency Solution to the Cluttered Background Problem in Active Contours [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco : IEEE Press, 2010: 2855-2862.
  • 8Vemuri B, CHEN Yun-mei. Joint Image Registration and Segmentation [ C ]//Geometric Level Set Methods in Imaging, Vision, and Graphics. Berlin: Springer, 2003: 251-269.
  • 9Cremers D, Soatto S. Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation [ J ]. International Journal of Computer Vision, 2005, 62 (3) : 249-265.
  • 10Jorge Badenas,Bober M,Pla F. Motion and intensitybased segmentation and its application to traffic monitoring[A].Florence,Italy,1997.502-509.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部