期刊文献+

基于智能多agent的推荐系统 被引量:1

A Recommendation System Based on Intelligence Multi-Agent
下载PDF
导出
摘要 针对传统推荐系统存在的用户评分稀疏性和系统扩展性问题,提出了一种基于智能多agent的推荐系统MASRS。首先采用余弦公式处理用户-项评分矩阵得到用户初始邻居集;然后将用户评分映射到相应项的属性值上,生成用户-属性值偏好矩阵UPm,并基于此矩阵进行用户相似性度量,得到用户产品推荐集,该方法有效缓解用户评分稀疏性问题;通过智能多agent架构推荐系统,使大量复杂计算在线下进行,从而改善系统存在的扩展性问题。同时实验表明新系统在推荐精度上收敛性更好。 Traditional recommendation system has the problem of sparse user ratings and system scalability. This paper proposes a recommendation system based on intelligence multi-agentl At first, the cosine similarity measure has been used to handle user-item rating matrix, thus the initial neighbor set for target users can be gained. Then, user ratings have been mapped to relevant item attributes for generating user-attributes value preference matrix UPm of each user. Thus, user similarity can be computed based on UPm and rating sparsity has been alleviated simultaneously. The recommendation system of intelligence multi-agent makes calculating an online processing, and thus improves the system scalability. Experimental results show that the new system achieves a betteraccuracy in recommended convergence.
出处 《计算机系统应用》 2010年第2期1-5,共5页 Computer Systems & Applications
关键词 推荐系统 稀疏性 用户-属性值偏好矩阵 智能多agent recommendation system sparsity user-attributes value preference matrix intelligence multi-agent
  • 相关文献

参考文献12

  • 1Adomavicius G, Tuznilin A. Toward the next generation of recommender systems: A survey of the state- of-the-art and possible extensions. IEEE Transacttions on Knowledge and Data Engineering, 2005, 17(6):734 - 742.
  • 2Breese J, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering. Proc. of the 14th Conference on Uncertainly in. Artificial Intelligence. 1998.43 - 52.
  • 3Burke RD. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adopted Interaction, 12(4):331 - 370.
  • 4Herlocker JL, Konstan JA, Terveen LG, et al. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 2004, 22(1):5 - 53.
  • 5Schafer JB, KonstanJ A, Ried IJ. E-Commerce recommendation applications. Data Mining and Knowledge Discovery, 2001,5(1-2): 115 - 153.
  • 6Schafer JB, Konstan JA, Riedl J. Recommender system in E-commerce. Proc. of the ACM Conference on Electronic Commerce: ACM Press, 1999.158- 166.
  • 7Pazzani M. A frame for collaborative, content-basd and Demographic filtering. Artifical Intelligence Review, 1999,13(5-6):393 - 408.
  • 8Billsus D, Pazzani M. Learning collaborative information filters. Proc. of Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1998.46 - 54.
  • 9Sarwar B, KaryPis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems: A case study. Proc. of the ACM WebKDD Workshop. 2000.
  • 10Xue GR, Lin CX, Yang Q, et al. scalable collaborative filtering using cluster-based smoothing. Proc. of Mini Micro System, 2004,25(9): 1665 - 1670.

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献557

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部